1
MHT CET 2025 19th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

A normal is drawn at a point $\mathrm{P}(x, y)$ of a curve $y=\mathrm{f}(x)$. The normal meets the $X$ axis at $Q$. $l(\mathrm{PQ})=\mathrm{k} \cdot(\mathrm{k}$ is a constant) Then equation of the curve through $(0, k)$ is

A
$x^2+y^2=\mathrm{k}^2$
B
$(1+\mathrm{k}) x^2+y^2=\mathrm{k}^2$
C
$x^2+\left(1+\mathrm{k}^2\right) y^2=\mathrm{k}^2$
D
$x^2+2 y^2=2 \mathrm{k}^2$
2
MHT CET 2025 19th April Morning Shift
MCQ (Single Correct Answer)
+2
-0
The order and degree of differential equation of all tangent lines to the parabola $x^2=4 y$ is respectively.
A
$1,2$
B
$2,2$
C
$3,1$
D
$4,1$
3
MHT CET 2025 19th April Morning Shift
MCQ (Single Correct Answer)
+2
-0
If $y=y(x)$ satisfies $\left(\frac{2+\sin x}{1+y}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=-\cos x$ such that $y(0)=2$, then $y\left(\frac{\pi}{2}\right)$ is equal to
A
4
B
3
C
2
D
1
4
MHT CET 2025 19th April Morning Shift
MCQ (Single Correct Answer)
+2
-0
In a bank, the principal increases continuously at a rate of $x \%$ per year. Then the rate $x$, if ₹$100$ double itself in 10 years, is ( $\log 2=0.6931$)
A
$6.93 \%$
B
$9.63 \%$
C
$6.09 \%$
D
$3.69 \%$
MHT CET Subjects
EXAM MAP