1
GATE ECE 2013
+2
-0.6
The signal flow graph for a system is given below. The transfer function $$\frac{Y(s)}{U(s)}$$ for this system is A
$$\frac{s+1}{5s^2+6s+2}$$
B
$$\frac{s+1}{s^2+6s+2}$$
C
$$\frac{s+1}{s^2+4s+2}$$
D
$$\frac{1}{5s^2+6s+2}$$
2
GATE ECE 2004
+2
-0.6
Consider the signal flow graph shown in Figure. The gain $$\frac{x_5}{x_1}$$ is A
$$\frac{1-\left(be\;+\;cf\;+\;dg\right)}{abcd}$$
B
$$\frac{bedg}{1-\left(be\;+\;cf\;+\;dg\right)}$$
C
$$\frac{abcd}{1-\left(be\;+\;cf\;+\;dg\right)\;+\;bedg}$$
D
$$\frac{1-\left(be\;+\;cf\;+\;dg\right)\;+\;bedg}{abcd}$$
3
GATE ECE 2003
+2
-0.6
The signal flow graph of a system is shown in figure. The transfer function $$\frac{C(s)}{R(s)}$$ of the system is A
$$\frac{6}{s^2+29s+6}$$
B
$$\frac{6s}{s^2+29s+6}$$
C
$$\frac{s(s+2)}{s^2+29s+6}$$
D
$$\frac{s(s+27)}{s^2+29s+6}$$
4
GATE ECE 2001
+2
-0.6
An electrical system and its signal-flow graph representations are shown in Figure (a) and (b) respectively. The values of G2 and H, respectively are A
$$\frac{Z_3\left(s\right)}{Z_2\left(s\right)+Z_3\left(s\right)+Z_4\left(s\right)},\frac{-Z_3\left(s\right)}{Z_1\left(s\right)+Z_3\left(s\right)}$$
B
$$\frac{-Z_3\left(s\right)}{Z_2\left(s\right)-Z_3\left(s\right)+Z_4\left(s\right)},\frac{-Z_3\left(s\right)}{Z_1\left(s\right)+Z_3\left(s\right)}$$
C
$$\frac{Z_3\left(s\right)}{Z_2\left(s\right)+Z_3\left(s\right)+Z_4\left(s\right)},\frac{Z_3\left(s\right)}{Z_1\left(s\right)+Z_3\left(s\right)}$$
D
$$\frac{-Z_3\left(s\right)}{Z_2\left(s\right)-Z_3\left(s\right)+Z_4\left(s\right)},\frac{Z_3\left(s\right)}{Z_1\left(s\right)+Z_3\left(s\right)}$$
GATE ECE Subjects
Signals and Systems
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics
EXAM MAP
Joint Entrance Examination