1
GATE ECE 1999
Subjective
+5
-0
The loop transfer function of a feedback control system is given by $$$G\left(s\right)H\left(s\right)=\frac{K\left(s+1\right)}{s\left(1+Ts\right)\left(1+2s\right)},\;K>0$$$ Using Routh-Hurwitz criterion, determine the region of K-T plane in which the
closed-loop system is stable.
2
GATE ECE 1998
Subjective
+5
-0
The characteristic equation of a feedback control system is
$$$s^4+20s^3+15s^2+2s+K\;=\;0$$$
(i) Determine the range of K for the system to be stable.
(ii) Can the system be marginally stable? If so, find the required value of K and the frequency of sustained oscillation.
(i) Determine the range of K for the system to be stable.
(ii) Can the system be marginally stable? If so, find the required value of K and the frequency of sustained oscillation.
3
GATE ECE 1996
Subjective
+5
-0
A system having an open loop transfer function
$$G\left(s\right)=\frac{K\left(s+3\right)}{s\left(s^2+2s+2\right)}$$
is used in a
control system with unity negative feedback. Using the Routh-Hurwitz criterion,
find the range of values of 'K' for which the feedback system is stable.
Questions Asked from Stability (Marks 5)
Number in Brackets after Paper Indicates No. of Questions
GATE ECE Subjects
Network Theory
Control Systems
Electronic Devices and VLSI
Analog Circuits
Digital Circuits
Microprocessors
Signals and Systems
Representation of Continuous Time Signal Fourier Series
Fourier Transform
Continuous Time Signal Laplace Transform
Discrete Time Signal Fourier Series Fourier Transform
Discrete Fourier Transform and Fast Fourier Transform
Discrete Time Signal Z Transform
Continuous Time Linear Invariant System
Discrete Time Linear Time Invariant Systems
Transmission of Signal Through Continuous Time LTI Systems
Sampling
Transmission of Signal Through Discrete Time Lti Systems
Miscellaneous
Communications
Electromagnetics
General Aptitude