1
GATE ECE 2007
MCQ (Single Correct Answer)
+2
-0.6
The Boolean expression Y= $$\overline A \,\overline B \,\overline C \,D + \overline A BC\overline D + A\overline {B\,} \overline C \,D + AB\overline C \,\overline D $$
A
Y = $$\overline A \,\overline B \,\overline C \,D + \overline A B\overline C + A\overline C D$$
B
Y = $$\overline A \,\overline B \,\overline C \,D + BC\overline D + A\overline B \overline C \,D$$
C
Y=$$ \overline A \,BC\,\overline D + \overline B \,\overline C D + A\overline B \overline C \,D$$
D
Y= $$\overline A \,BC\,\overline D + \overline B \,\overline C D + AB\overline C \,\overline D $$
2
GATE ECE 2006
MCQ (Single Correct Answer)
+2
-0.6
The point p in the following figure is stuck- at-1. The output f will be GATE ECE 2006 Digital Circuits - Boolean Algebra Question 16 English
A
$$\overline {AB\overline {C\,} } $$
B
$$\overline A $$
C
$$AB\overline C $$
D
A
3
GATE ECE 2004
MCQ (Single Correct Answer)
+2
-0.6
A Boolean function 'f' of two variables x and y is defined as follows: f(0,0)=f(0,1)=f(1,1)=1;f(1,0)=0 Assuming complements of x and y are not available, a minimum cost solution for realizing F using only 2-input NOR gates and 2-input OR gates (each having unit cost) would have a total cost
A
1 unit
B
4 unit
C
3 unit
D
2 unit
4
GATE ECE 2004
MCQ (Single Correct Answer)
+2
-0.6
The Boolean expression AC + B$$\overline C $$ is equivalent to
A
$$\overline A \,C + B\overline C + AC$$
B
$$\overline B C\, + AC + B\overline C + \overline A C\overline B $$
C
AC+$$B\overline C + \overline B C + ABC$$
D
$$\overline A \,B\,\overline C + A\,B\,\overline C + A\overline {\,B} \,C$$
GATE ECE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12