1
GATE ECE 1993
Subjective
+10
-0
Signals A,B,C,D and $$\overline D $$ are available. Using a single 8 - to - 1 multiplexer and no other gate, implement the Boolean function.
$$f(A,B,C,D) = B.C + A.B.\bar D + \bar A.\bar C.\bar D$$
$$f(A,B,C,D) = B.C + A.B.\bar D + \bar A.\bar C.\bar D$$
2
GATE ECE 1989
Subjective
+10
-0
A chemical reactor has three sensors indicating the following conditions:-
(1) Pressure (P) is low or high'
(2) Temperature (T) is low or high' and
(3) Liquid level (L) is low or high.
(1) Pressure (P) is low or high'
(2) Temperature (T) is low or high' and
(3) Liquid level (L) is low or high.
its has two controls - Heater (H) which is either on or off and inlet value (V) which is open or close. The controls are operated as per Table.
(a) Using the convertion High =1, Low = 0, On=1, Off=0, Open=1 and Closed=0, draw the Karnaugh maps for H and V.
(b) Obtain the minimal product of sums expressions for H and V.
(c) Realize the logic for H and V using two 4-input multiplexers with T and L as control inputs. Used T as MSB.
Questions Asked from Combinational Circuits (Marks 10)
Number in Brackets after Paper Indicates No. of Questions
GATE ECE Subjects
Signals and Systems
Representation of Continuous Time Signal Fourier Series Fourier Transform Continuous Time Signal Laplace Transform Discrete Time Signal Fourier Series Fourier Transform Discrete Fourier Transform and Fast Fourier Transform Discrete Time Signal Z Transform Continuous Time Linear Invariant System Discrete Time Linear Time Invariant Systems Transmission of Signal Through Continuous Time LTI Systems Sampling Transmission of Signal Through Discrete Time Lti Systems Miscellaneous
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics