1
GATE ECE 2014 Set 4
MCQ (Single Correct Answer)
+2
-0.6
Consider a communication scheme where the binary valued signal X satisfies P{X = + 1} = 0.75 and P {X = - 1} = 0.25. The received signal Y = X + Z, where Z is a Gaussian random variable with zero mean and variance $${\sigma ^2}$$. The received signal Y is fed to the threshold detector. The output of the threshold detector $${\hat X}$$ is: $$$\hat X:\left\{ {\matrix{ { + \,1,} & {Y\, > \tau } \cr { - \,1,} & {Y\, \le \,\,\tau .} \cr } } \right.$$$ To achieve a minimum probability of error $$P\{ \hat X\, \ne \,X\} $$, the threshold $$\tau $$ should be
A
strictly positive
B
zero
C
strictly negative
D
strictly positive, zero, or strictly negative depending on the nonzero value of $${\sigma ^2}$$
2
GATE ECE 2014 Set 2
MCQ (Single Correct Answer)
+2
-0.6
Coherent orthogonal binary FSK modulation is used to transmit two equiprobable symbol waveforms $${s_1}\,(t)\, = \,\alpha \,\,\cos \,\,\,2\,\pi {f_1}\,t\,and\,\,{s_{2\,}}(t)\,\, = \,\alpha \,\,\cos \,\,\,2\,\pi {f_2}\,t$$, where $$\,\alpha = 4\,\,\,mV$$. Assume an AWGN channel with two-sided noise power spectral density $$\,{{{N_0}} \over 2} = 0.5\,\, \times \,{10^{ - 12}}$$ W/Hz. Using an optimal receiver and the relation $$Q(v) = {1 \over {\sqrt {2\,\pi } }}\,\int\limits_v^\infty {e{\,^{ - {u^2}/2}}} \,du$$, the bit error probability for a data rate of 500 kbps is
A
Q (2)
B
$$Q\left( {2\sqrt 2 } \right)$$
C
Q (4)
D
$$Q\left( {4\sqrt 2 } \right)$$
3
GATE ECE 2013
MCQ (Single Correct Answer)
+2
-0.6
Let U and V be two independent zero mean Gaussian random variables of variances $${{1 \over 4}}$$ and $${{1 \over 9}}$$ respectively. The probability $$P(\,3V\, \ge \,\,2U)$$ is
A
4/9
B
1/2
C
2/3
D
5/9
4
GATE ECE 2012
MCQ (Single Correct Answer)
+2
-0.6
A BPSK scheme operating over an AWGN channel with noise power spectral density of N02, uses equi-probable signals $$${s_1}\left( t \right) = \sqrt {{{2E} \over T}\,\sin \left( {{\omega _c}t} \right)} $$$
and $$${s_2}\left( t \right) = - \sqrt {{{2E} \over T}\,\sin \left( {{\omega _c}t} \right)} $$$

over the symbol interval, $$(0, T)$$. If the local oscillator in a coherent receiver is ahead in phase by 450 with respect to the received signal, the probability of error in the resulting system is

A
$$Q\left( {\sqrt {{{2E} \over {{N_0}}}} } \right)$$
B
$$Q\left( {\sqrt {{{E} \over {{N_0}}}} } \right)$$
C
$$Q\left( {\sqrt {{{E} \over {{2N_0}}}} } \right)$$
D
$$Q\left( {\sqrt {{{E} \over {{4N_0}}}} } \right)$$
GATE ECE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12