1
GATE ECE 2012
MCQ (Single Correct Answer)
+2
-0.6
A BPSK scheme operating over an AWGN channel with noise power spectral density of N02, uses equi-probable signals
$$${s_1}\left( t \right) = \sqrt {{{2E} \over T}\,\sin \left( {{\omega _c}t} \right)} $$$
and $$${s_2}\left( t \right) = - \sqrt {{{2E} \over T}\,\sin \left( {{\omega _c}t} \right)} $$$
and $$${s_2}\left( t \right) = - \sqrt {{{2E} \over T}\,\sin \left( {{\omega _c}t} \right)} $$$
over the symbol interval, $$(0, T)$$. If the local oscillator in a coherent receiver is ahead in phase by 450 with respect to the received signal, the probability of error in the resulting system is
2
GATE ECE 2011
MCQ (Single Correct Answer)
+2
-0.6
A four phase and an eight-phase signal constellation are shown in the figure below.
For the constraint that the minimum distance between pairs of signal points be d for both constellations, the radii r1, and r2 of the circles are
3
GATE ECE 2011
MCQ (Single Correct Answer)
+2
-0.6
A four phase and an eight-phase signal constellation are shown in the figure below.
Assuming high SNR and that all signals are equally probable, the additional average transmitted signal energy required by the 8-PSK signal to achieve the same error probability as the 4-PSK signal is
4
GATE ECE 2010
MCQ (Single Correct Answer)
+2
-0.6
Consider a base band binary PAM receiver shown below. The additive channel noise
$$n(t)$$ is white with power spectral density $${S_N}\left( f \right) = {N_0}/2 = {10^{ - 20}}$$ $$W/Hz$$. The low-pass filter
is ideal with unity gain and cut -off frequency $$1MHz$$. Let $${Y_k}$$ represent the random variable $$y\left( {{t_k}} \right)$$.
$${Y_k} = {N_k}$$ if transmitted bit $${b_k} = 0$$
$${Y_k} = a + {N_k}$$ if transmitted bit $${b_k} = 1$$
Where $${b_k} = 0$$ represents the noise sample value. The noise sample has a probability density function, $${P_{{N_k}}}\left( n \right)\,\,\,\,\,\,\, = 0.5\alpha {e^{ - \alpha \left| n \right|}}$$ (This has mean zero and variance $$2/{\alpha ^2}$$). Assume transmitted bits to be equiprobable and threshold $$z$$ is set to $$a/2 = {10^{ - 6}}V$$.
$${Y_k} = {N_k}$$ if transmitted bit $${b_k} = 0$$
$${Y_k} = a + {N_k}$$ if transmitted bit $${b_k} = 1$$
Where $${b_k} = 0$$ represents the noise sample value. The noise sample has a probability density function, $${P_{{N_k}}}\left( n \right)\,\,\,\,\,\,\, = 0.5\alpha {e^{ - \alpha \left| n \right|}}$$ (This has mean zero and variance $$2/{\alpha ^2}$$). Assume transmitted bits to be equiprobable and threshold $$z$$ is set to $$a/2 = {10^{ - 6}}V$$.
The value of the parameter $$\alpha $$( in V-1 ) is
Questions Asked from Noise In Digital Communication (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE ECE 2016 Set 1 (2)
GATE ECE 2015 Set 2 (1)
GATE ECE 2015 Set 1 (2)
GATE ECE 2014 Set 4 (2)
GATE ECE 2014 Set 2 (1)
GATE ECE 2013 (1)
GATE ECE 2012 (2)
GATE ECE 2011 (2)
GATE ECE 2010 (2)
GATE ECE 2009 (2)
GATE ECE 2008 (1)
GATE ECE 2007 (5)
GATE ECE 2006 (2)
GATE ECE 2005 (3)
GATE ECE 2004 (1)
GATE ECE 2003 (2)
GATE ECE 2001 (1)
GATE ECE 1999 (2)
GATE ECE 1988 (2)
GATE ECE 1987 (1)
GATE ECE Subjects
Network Theory
Control Systems
Electronic Devices and VLSI
Analog Circuits
Digital Circuits
Microprocessors
Signals and Systems
Representation of Continuous Time Signal Fourier Series Fourier Transform Continuous Time Signal Laplace Transform Discrete Time Signal Fourier Series Fourier Transform Discrete Fourier Transform and Fast Fourier Transform Discrete Time Signal Z Transform Continuous Time Linear Invariant System Discrete Time Linear Time Invariant Systems Transmission of Signal Through Continuous Time LTI Systems Sampling Transmission of Signal Through Discrete Time Lti Systems Miscellaneous
Communications
Electromagnetics
General Aptitude