where $$a,b,c,d$$ $$ \in \left\{ {0,1} \right\}$$
STATEMENT - 1 : The probability that the system of equations has a unique solution is $${3 \over 8}.$$ and
STATEMENT - 2 : The probability that the system of equations has a solution is $$1.$$
Consider the functions defined implicitly by the equation $$y^3-3y+x=0$$ on various intervals in the real line. If $$x\in(-\infty,-2)\cup(2,\infty)$$, the equation implicitly defines a unique real valued differentiable function $$y=f(x)$$. If $$x\in(-2,2)$$, the equation implicitly defines a unique real valued differentiable function $$y=g(x)$$ satisfying $$g(0)=0$$
$$\int\limits_{ - 1}^1 {g'\left( x \right)dx = } $$
Consider the functions defined implicitly by the equation $$y^3-3y+x=0$$ on various intervals in the real line. If $$x\in(-\infty,-2)\cup(2,\infty)$$, the equation implicitly defines a unique real valued differentiable function $$y=f(x)$$. If $$x\in(-2,2)$$, the equation implicitly defines a unique real valued differentiable function $$y=g(x)$$ satisfying $$g(0)=0$$
The area of the region bounded by the curve $$y=f(x),$$ the
$$x$$-axis, and the lines $$x=a$$ and $$x=b$$, where $$ - \infty < a < b < - 2,$$ is :
Consider the functions defined implicitly by the equation $$y^3-3y+x=0$$ on various intervals in the real line. If $$x\in(-\infty,-2)\cup(2,\infty)$$, the equation implicitly defines a unique real valued differentiable function $$y=f(x)$$. If $$x\in(-2,2)$$, the equation implicitly defines a unique real valued differentiable function $$y=g(x)$$ satisfying $$g(0)=0$$
If $$f\left( { - 10\sqrt 2 } \right) = 2\sqrt 2 ,$$ then $$f''\left( { - 10\sqrt 2 } \right) = $$