$$A = \left\{ {z:\,{\mathop{\rm Im}\nolimits} \,\,z\,\, \ge \,1} \right\}$$
$$B = \left\{ {z:\,\,\left| {z - 2 - i} \right| = 3} \right\}$$
$$C = \left\{ {z:\,{\mathop{\rm Re}\nolimits} (1 - i)z) = \sqrt 2 \,} \right\}$$
Let z be any point in $$A \cap B \cap C$$
Then, $${\left| {z + 1 - i} \right|^2} + {\left| {z - 5 - i} \right|^2}$$ lies between :
Let A, B, C be three sets of complex numbers as defined below :
$$A = \left\{ {z:\,{\mathop{\rm Im}\nolimits} \,\,z\,\, \ge \,1} \right\}$$
$$B = \left\{ {z:\,\,\left| {z - 2 - i} \right| = 3} \right\}$$
$$C = \left\{ {z:\,{\mathop{\rm Re}\nolimits} (1 - i)z) = \sqrt 2 \,} \right\}$$
The number of elements in the set $$A \cap B \cap C$$ is
Let $${L_1},$$ $${L_2},$$ $${L_3}$$ be the lines of intersection of the planes $${P_2}$$ and $${P_3},$$ $${P_3}$$ and $${P_1},$$ $${P_1}$$ and $${P_2},$$ respectively.
STATEMENT - 1Z: At least two of the lines $${L_1},$$ $${L_2}$$ and $${L_3}$$ are non-parallel and
STATEMENT - 2: The three planes doe not have a common point.