1
IIT-JEE 2008 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
Let A, B, C be three sets of complex numbers as defined below :

$$A = \left\{ {z:\,{\mathop{\rm Im}\nolimits} \,\,z\,\, \ge \,1} \right\}$$

$$B = \left\{ {z:\,\,\left| {z - 2 - i} \right| = 3} \right\}$$

$$C = \left\{ {z:\,{\mathop{\rm Re}\nolimits} (1 - i)z) = \sqrt 2 \,} \right\}$$

Let z be any point in $$A \cap B \cap C$$

Then, $${\left| {z + 1 - i} \right|^2} + {\left| {z - 5 - i} \right|^2}$$ lies between :

A
25 and 29
B
30 and 34
C
35 and 39
D
40 and 44
2
IIT-JEE 2008 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-2
A straight line through the vertex p of a triangle PQR intersects the side QR at the point S and the circumcircle of the triangle PQR at the point T. If S is not the centre of the circumcircle, then :
A
$${1 \over {PS}} + {1 \over {ST}} < {2 \over {\sqrt {QS \times SR} }}$$
B
$${1 \over {PS}} + {1 \over {ST}} > {2 \over {\sqrt {QS \times SR} }}$$
C
$${1 \over {PS}} + {1 \over {ST}} < {4 \over {QR}}$$
D
$${1 \over {PS}} + {1 \over {ST}} > {4 \over {QR}}$$
3
IIT-JEE 2008 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-2
Let $${S_n} = \sum\limits_{k = 1}^n {{n \over {{n^2} + kn + {k^2}}}} $$ and $${T_n} = \sum\limits_{k = 0}^{n - 1} {{n \over {{n^2} + kn + {k^2}}}} $$ for $$n$$ $$=1, 2, 3, ............$$ Then,
A
$${S_n} < {\pi \over {3\sqrt 3 }}$$
B
$${S_n} > {\pi \over {3\sqrt 3 }}$$
C
$${T_n} < {\pi \over {3\sqrt 3 }}$$
D
$${T_n} > {\pi \over {3\sqrt 3 }}$$
4
IIT-JEE 2008 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
If $$0 < x < 1$$, then

$$\sqrt {1 + {x^2}} {\left[ {{{\left\{ {x\cos \left( {{{\cot }^{ - 1}}x} \right) + \sin \left( {{{\cot }^{ - 1}}x} \right)} \right\}}^2} - 1} \right]^{1/2}} = $$
A
$${x \over {\sqrt {1 + {x^2}} }}$$
B
$$x$$
C
$$x\sqrt {1 + {x^2}} $$
D
$$\sqrt {1 + {x^2}} $$
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12