1
IIT-JEE 2008 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-2
Let $$f(x)$$ be a non-constant twice differentiable function defined on $$\left( { - \infty ,\infty } \right)$$
such that $$f\left( x \right) = f\left( {1 - x} \right)$$ and $$f'\left( {{1 \over 4}} \right) = 0.$$ Then,
such that $$f\left( x \right) = f\left( {1 - x} \right)$$ and $$f'\left( {{1 \over 4}} \right) = 0.$$ Then,
2
IIT-JEE 2008 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
Consider the two curves $${C_1}:{y^2} = 4x,\,{C_2}:{x^2} + {y^2} - 6x + 1 = 0$$. Then,
3
IIT-JEE 2008 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
Let $$f$$ and $$g$$ be real valued functions defined on interval $$(-1, 1)$$ such that $$g''(x)$$ is continuous, $$g\left( 0 \right) \ne 0.$$ $$g'\left( 0 \right) = 0$$, $$g''\left( 0 \right) \ne 0$$, and $$f\left( x \right) = g\left( x \right)\sin x$$
STATEMENT - 1: $$\mathop {\lim }\limits_{x \to 0} \,\,\left[ {g\left( x \right)\cot x - g\left( 0 \right)\cos ec\,x} \right] = f''\left( 0 \right)$$ and
STATEMENT - 2: $$f'\left( 0 \right) = g\left( 0 \right)$$
4
IIT-JEE 2008 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
Let A, B, C be three sets of complex numbers as defined below
$$A = \left\{ {z:\,{\mathop{\rm Im}\nolimits} \,\,z\,\, \ge \,1} \right\}$$
$$B = \left\{ {z:\,\,\left| {z - 2 - i} \right| = 3} \right\}$$
$$C = \left\{ {z:\,{\mathop{\rm Re}\nolimits} (1 - i)z) = \sqrt 2 \,} \right\}$$
$$A = \left\{ {z:\,{\mathop{\rm Im}\nolimits} \,\,z\,\, \ge \,1} \right\}$$
$$B = \left\{ {z:\,\,\left| {z - 2 - i} \right| = 3} \right\}$$
$$C = \left\{ {z:\,{\mathop{\rm Re}\nolimits} (1 - i)z) = \sqrt 2 \,} \right\}$$
Let z be any point $$A \cap B \cap C$$ and let w be any point satisfying $$\left| {w - 2 - i} \right| < 3\,$$. Then, $$\left| z \right| - \left| w \right| + 3$$ lies between :
Paper analysis
Total Questions
Chemistry
23
Mathematics
23
Physics
23
More papers of JEE Advanced
JEE Advanced 2024 Paper 2 Online
JEE Advanced 2024 Paper 1 Online
JEE Advanced 2023 Paper 2 Online
JEE Advanced 2023 Paper 1 Online
JEE Advanced 2022 Paper 2 Online
JEE Advanced 2022 Paper 1 Online
JEE Advanced 2021 Paper 2 Online
JEE Advanced 2021 Paper 1 Online
JEE Advanced 2020 Paper 2 Offline
JEE Advanced 2020 Paper 1 Offline
JEE Advanced 2019 Paper 2 Offline
JEE Advanced 2019 Paper 1 Offline
JEE Advanced 2018 Paper 2 Offline
JEE Advanced 2018 Paper 1 Offline
JEE Advanced 2017 Paper 2 Offline
JEE Advanced 2017 Paper 1 Offline
JEE Advanced 2016 Paper 2 Offline
JEE Advanced 2016 Paper 1 Offline
JEE Advanced 2015 Paper 2 Offline
JEE Advanced 2015 Paper 1 Offline
JEE Advanced 2014 Paper 2 Offline
JEE Advanced 2014 Paper 1 Offline
JEE Advanced 2013 Paper 2 Offline
JEE Advanced 2013 Paper 1 Offline
IIT-JEE 2012 Paper 2 Offline
IIT-JEE 2012 Paper 1 Offline
IIT-JEE 2011 Paper 1 Offline
IIT-JEE 2011 Paper 2 Offline
IIT-JEE 2010 Paper 1 Offline
IIT-JEE 2010 Paper 2 Offline
IIT-JEE 2009 Paper 2 Offline
IIT-JEE 2009 Paper 1 Offline
IIT-JEE 2008 Paper 2 Offline
IIT-JEE 2008 Paper 1 Offline
IIT-JEE 2007
IIT-JEE 2007 Paper 2 Offline
IIT-JEE 2006 Screening
IIT-JEE 2006
IIT-JEE 2005 Screening
IIT-JEE 2005
IIT-JEE 2004
IIT-JEE 2004 Screening
IIT-JEE 2003
IIT-JEE 2003 Screening
IIT-JEE 2002 Screening
IIT-JEE 2002
IIT-JEE 2001
IIT-JEE 2001 Screening
IIT-JEE 2000 Screening
IIT-JEE 2000
IIT-JEE 1999 Screening
IIT-JEE 1999
IIT-JEE 1998
IIT-JEE 1998 Screening
IIT-JEE 1997
IIT-JEE 1996
IIT-JEE 1995
IIT-JEE 1995 Screening
IIT-JEE 1994
IIT-JEE 1993
IIT-JEE 1992
IIT-JEE 1991
IIT-JEE 1990
IIT-JEE 1989
IIT-JEE 1988
IIT-JEE 1987
IIT-JEE 1986
IIT-JEE 1985
IIT-JEE 1984
IIT-JEE 1983
IIT-JEE 1982
IIT-JEE 1981
IIT-JEE 1980
IIT-JEE 1979
IIT-JEE 1978
JEE Advanced
Papers
2020
2019
2018
2017
2016
1997
1996
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978