Let a and b be non-zero real numbers. Then, the equation
$$(a{x^2} + b{y^2} + c)({x^2} - 5xy + 6{y^2}) = 0$$ represents :
Let $$g(x) = {{{{(x - 1)}^n}} \over {\log {{\cos }^m}(x - 1)}};0 < x < 2,m$$ and $$n$$ are integers, $$m \ne 0,n > 0$$, and let $$p$$ be the left hand derivative of $$|x - 1|$$ at $$x = 1$$. If $$\mathop {\lim }\limits_{x \to {1^ + }} g(x) = p$$, then
The total number of local maxima and local minima of the function
$$f(x) = \left\{ {\matrix{
{{{(2 + x)}^3},} & { - 3 < x \le - 1} \cr
{{x^{2/3}},} & { - 1 < x < 2} \cr
} } \right.$$ is
Consider the system of equations:
$$x-2y+3z=-1$$
$$-x+y-2z=k$$
$$x-3y+4z=1$$
Statement - 1 : The system of equations has no solution for $$k\ne3$$.
and
Statement - 2 : The determinant $$\left| {\matrix{ 1 & 3 & { - 1} \cr { - 1} & { - 2} & k \cr 1 & 4 & 1 \cr } } \right| \ne 0$$, for $$k \ne 3$$.