1
IIT-JEE 2008 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-2
A straight line through the vertex p of a triangle PQR intersects the side QR at the point S and the circumcircle of the triangle PQR at the point T. If S is not the centre of the circumcircle, then :
A
$${1 \over {PS}} + {1 \over {ST}} < {2 \over {\sqrt {QS \times SR} }}$$
B
$${1 \over {PS}} + {1 \over {ST}} > {2 \over {\sqrt {QS \times SR} }}$$
C
$${1 \over {PS}} + {1 \over {ST}} < {4 \over {QR}}$$
D
$${1 \over {PS}} + {1 \over {ST}} > {4 \over {QR}}$$
2
IIT-JEE 2008 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-2
Let $${S_n} = \sum\limits_{k = 1}^n {{n \over {{n^2} + kn + {k^2}}}} $$ and $${T_n} = \sum\limits_{k = 0}^{n - 1} {{n \over {{n^2} + kn + {k^2}}}} $$ for $$n$$ $$=1, 2, 3, ............$$ Then,
A
$${S_n} < {\pi \over {3\sqrt 3 }}$$
B
$${S_n} > {\pi \over {3\sqrt 3 }}$$
C
$${T_n} < {\pi \over {3\sqrt 3 }}$$
D
$${T_n} > {\pi \over {3\sqrt 3 }}$$
3
IIT-JEE 2008 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
If $$0 < x < 1$$, then

$$\sqrt {1 + {x^2}} {\left[ {{{\left\{ {x\cos \left( {{{\cot }^{ - 1}}x} \right) + \sin \left( {{{\cot }^{ - 1}}x} \right)} \right\}}^2} - 1} \right]^{1/2}} = $$
A
$${x \over {\sqrt {1 + {x^2}} }}$$
B
$$x$$
C
$$x\sqrt {1 + {x^2}} $$
D
$$\sqrt {1 + {x^2}} $$
4
IIT-JEE 2008 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
A circle C of radius 1 is inscribed in an equilateral triangle PQR. The points of contact of C with the sides PQ, QR, RP are D, E, F, respectively. The line PQ is given by the equation $$\sqrt 3 x\, + \,y\, - \,6 = 0$$ and the point D is $$\left( {{{3\,\sqrt 3 } \over 2},\,{3 \over 2}} \right)$$. Further, it is given that the origin and the centre of C are on the same side of the line PQ.

Points E and F are given by

A
$$\left( {{{\,\sqrt 3 } \over 2},\,{3 \over 2}} \right),\,\left( {\sqrt 3 ,\,0} \right)$$
B
$$\left( {{{\,\sqrt 3 } \over 2},\,{1 \over 2}} \right),\,\left( {\sqrt 3 ,\,0} \right)$$
C
$$\left( {{{\,\sqrt 3 } \over 2},\,{3 \over 2}} \right),\,\left( {{{\,\sqrt 3 } \over 2},\,{1 \over 2}} \right)$$
D
$$\left( {{{\,3} \over 2},\,{{\sqrt 3 } \over 2}} \right),\,\left( {{{\,\sqrt 3 } \over 2},\,{1 \over 2}} \right)$$
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12