1
IIT-JEE 2008 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
If $$0 < x < 1$$, then

$$\sqrt {1 + {x^2}} {\left[ {{{\left\{ {x\cos \left( {{{\cot }^{ - 1}}x} \right) + \sin \left( {{{\cot }^{ - 1}}x} \right)} \right\}}^2} - 1} \right]^{1/2}} = $$
A
$${x \over {\sqrt {1 + {x^2}} }}$$
B
$$x$$
C
$$x\sqrt {1 + {x^2}} $$
D
$$\sqrt {1 + {x^2}} $$
2
IIT-JEE 2008 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
Consider the two curves $${C_1}:{y^2} = 4x,\,{C_2}:{x^2} + {y^2} - 6x + 1 = 0$$. Then,
A
$${C_1}$$ and $${C_2}$$ touch each other only at one point.
B
$${C_1}$$ and $${C_2}$$ touch each other exactly at two points
C
$${C_1}$$ and $${C_2}$$ intersect (but do not touch ) at exactly two points
D
$${C_1}$$ and $${C_2}$$ neither intersect nor touch each other
3
IIT-JEE 2008 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
Let A, B, C be three sets of complex numbers as defined below

$$A = \left\{ {z:\,{\mathop{\rm Im}\nolimits} \,\,z\,\, \ge \,1} \right\}$$

$$B = \left\{ {z:\,\,\left| {z - 2 - i} \right| = 3} \right\}$$

$$C = \left\{ {z:\,{\mathop{\rm Re}\nolimits} (1 - i)z) = \sqrt 2 \,} \right\}$$

Let z be any point $$A \cap B \cap C$$ and let w be any point satisfying $$\left| {w - 2 - i} \right| < 3\,$$. Then, $$\left| z \right| - \left| w \right| + 3$$ lies between :

A
- 6 and 3
B
- 3 and 6
C
- 6 and 6
D
- 3 and 9
4
IIT-JEE 2008 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-2
Let $${S_n} = \sum\limits_{k = 1}^n {{n \over {{n^2} + kn + {k^2}}}} $$ and $${T_n} = \sum\limits_{k = 0}^{n - 1} {{n \over {{n^2} + kn + {k^2}}}} $$ for $$n$$ $$=1, 2, 3, ............$$ Then,
A
$${S_n} < {\pi \over {3\sqrt 3 }}$$
B
$${S_n} > {\pi \over {3\sqrt 3 }}$$
C
$${T_n} < {\pi \over {3\sqrt 3 }}$$
D
$${T_n} > {\pi \over {3\sqrt 3 }}$$
JEE Advanced Papers
EXAM MAP