STATEMENT - 1 :
Two cylinders, one hollow (metal) and the other solid (wood) with the same mass and identical dimensions are simultaneously allowed to roll without slipping down an inclined plane from the same height. The hollow cylinder will reach the bottom of the inclined plane first.
and
STATEMENT - 2 :
By the principle of conservation of energy, the total kinetic energies of both the cylinders are identical when they reach the bottom of the incline.
STATEMENT - 1 :
The stream of water flowing at high speed from a garden hose pipe tends to spread line a fountain when held vertically up, but tends to narrow down when held vertically down.
and
STATEMENT - 2 :
In any steady flow of an incompressible fluid, the volume flow rate of the fluid remains constant.
A small spherical monoatomic ideal gas bubble $$\left( {\gamma = {5 \over 3}} \right)$$ is trapped inside a liquid of density $$\rho_1$$ (see figure). Assume that the bubble does not exchange any heat with the liquid. The bubble contains n moles of gas. The temperature of the gas when the bubble is at the bottom is T$$_0$$, the height of the liquid is H and the atmospheric pressure is P$$_0$$ (Neglect surface tension)
As the bubble moves upwards, besides the buoyancy force the following forces are acting on it
A small spherical monoatomic ideal gas bubble $$\left( {\gamma = {5 \over 3}} \right)$$ is trapped inside a liquid of density $$\rho_1$$ (see figure). Assume that the bubble does not exchange any heat with the liquid. The bubble contains n moles of gas. The temperature of the gas when the bubble is at the bottom is T$$_0$$, the height of the liquid is H and the atmospheric pressure is P$$_0$$ (Neglect surface tension)
When the gas bubble is at a height y from the bottom, its temperature is :