1
IIT-JEE 2008 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-2
Let $$P\left( {{x_1},{y_1}} \right)$$ and $$Q\left( {{x_2},{y_2}} \right),{y_1} < 0,{y_2} < 0,$$ be the end points of the latus rectum of the ellipse $${x^2} + 4{y^2} = 4.$$ The equations of parabolas with latus rectum $$PQ$$ are :
A
$${x^2} + 2\sqrt 3y = 3 + \sqrt 3 $$
B
$${x^2} - 2\sqrt 3y = 3 + \sqrt 3 $$
C
$${x^2} + 2\sqrt 3y = 3 - \sqrt 3 $$
D
$${x^2} - 2\sqrt 3 y = 3 - \sqrt 3 $$
2
IIT-JEE 2008 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
A circle C of radius 1 is inscribed in an equilateral triangle PQR. The points of contact of C with the sides PQ, QR, RP are D, E, F, respectively. The line PQ is given by the equation $$\sqrt 3 x\, + \,y\, - \,6 = 0$$ and the point D is $$\left( {{{3\,\sqrt 3 } \over 2},\,{3 \over 2}} \right)$$. Further, it is given that the origin and the centre of C are on the same side of the line PQ.

The equation of circle C is

A
$${\left( {x\, - 2\sqrt 3 \,} \right)^2} + {(y - 1)^2} = 1$$
B
$${\left( {x\, - 2\sqrt 3 \,} \right)^2} + {(y + {1 \over 2})^2} = 1$$
C
$${\left( {x\, - \sqrt 3 \,} \right)^2} + {(y + 1)^2} = 1$$
D
$${\left( {x\, - \sqrt 3 \,} \right)^2} + {(y - 1)^2} = 1$$
3
IIT-JEE 2008 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1

Let a and b be non-zero real numbers. Then, the equation

$$(a{x^2} + b{y^2} + c)({x^2} - 5xy + 6{y^2}) = 0$$ represents :

A
four straight lines, when c = 0 and a, b are of the same sign
B
two straight lines and a circle, when a = b, and c is of sign opposite to that of a
C
two straight lines and a hyperbola, when a and b are of the same sign and c is of sign opposite to that of a
D
a circle and an ellipse, when a and b are of the same sign and c is of sign opposite to that of a
4
IIT-JEE 2008 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1

Let $$g(x) = {{{{(x - 1)}^n}} \over {\log {{\cos }^m}(x - 1)}};0 < x < 2,m$$ and $$n$$ are integers, $$m \ne 0,n > 0$$, and let $$p$$ be the left hand derivative of $$|x - 1|$$ at $$x = 1$$. If $$\mathop {\lim }\limits_{x \to {1^ + }} g(x) = p$$, then

A
$$n = 1,m = 1$$
B
$$n = 1,m = - 1$$
C
$$n = 2,m = 2$$
D
$$n > 2,m = n$$
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12