1
IIT-JEE 2008 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
Let $$f$$ and $$g$$ be real valued functions defined on interval $$(-1, 1)$$ such that $$g''(x)$$ is continuous, $$g\left( 0 \right) \ne 0.$$ $$g'\left( 0 \right) = 0$$, $$g''\left( 0 \right) \ne 0$$, and $$f\left( x \right) = g\left( x \right)\sin x$$

STATEMENT - 1: $$\mathop {\lim }\limits_{x \to 0} \,\,\left[ {g\left( x \right)\cot x - g\left( 0 \right)\cos ec\,x} \right] = f''\left( 0 \right)$$ and

STATEMENT - 2: $$f'\left( 0 \right) = g\left( 0 \right)$$

A
Statement - 1 is True, Statement - 2 is True; Statement - 2 is a correct explanation for Statement - 1
B
Statement - 1 is True, Statement - 2 is True; Statement - 2 is NOT a correct explanation for Statement - 1
C
Statement - 1 is True, Statement -2 is False
D
Statement - 1 is False, Statement -2 is True
2
IIT-JEE 2008 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1

Let a and b be non-zero real numbers. Then, the equation

$$(a{x^2} + b{y^2} + c)({x^2} - 5xy + 6{y^2}) = 0$$ represents :

A
four straight lines, when c = 0 and a, b are of the same sign
B
two straight lines and a circle, when a = b, and c is of sign opposite to that of a
C
two straight lines and a hyperbola, when a and b are of the same sign and c is of sign opposite to that of a
D
a circle and an ellipse, when a and b are of the same sign and c is of sign opposite to that of a
3
IIT-JEE 2008 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1

Let $$g(x) = {{{{(x - 1)}^n}} \over {\log {{\cos }^m}(x - 1)}};0 < x < 2,m$$ and $$n$$ are integers, $$m \ne 0,n > 0$$, and let $$p$$ be the left hand derivative of $$|x - 1|$$ at $$x = 1$$. If $$\mathop {\lim }\limits_{x \to {1^ + }} g(x) = p$$, then

A
$$n = 1,m = 1$$
B
$$n = 1,m = - 1$$
C
$$n = 2,m = 2$$
D
$$n > 2,m = n$$
4
IIT-JEE 2008 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1

The total number of local maxima and local minima of the function

$$f(x) = \left\{ {\matrix{ {{{(2 + x)}^3},} & { - 3 < x \le - 1} \cr {{x^{2/3}},} & { - 1 < x < 2} \cr } } \right.$$ is

A
0
B
1
C
2
D
3
JEE Advanced Papers
EXAM MAP