1
GATE ECE 2005
MCQ (Single Correct Answer)
+1
-0.3
In what range should $$Re(s)$$ remain so that the laplace transform of the function $${e^{\left( {a + 2} \right)t + 5}}$$ exists?
A
$${\mathop{\rm Re}\nolimits} \left( s \right) > a + 2$$
B
$${\mathop{\rm Re}\nolimits} \left( s \right) > a + 7$$
C
$${\mathop{\rm Re}\nolimits} \left( s \right) < 2$$
D
$${\mathop{\rm Re}\nolimits} \left( s \right) > a + 5$$
2
GATE ECE 2005
MCQ (Single Correct Answer)
+2
-0.6
Match the following and choose the correct combination

Group $$-$$ $${\rm I}$$
$$E.$$ Newton $$-$$ Raphson method
$$F.$$ Runge-Kutta method
$$G.$$ Simpson's Rule
$$H.$$ Gauss elimination

Group $$-$$ $${\rm II}$$
$$(1)$$ Solving non-linear equations
$$(2)$$ Solving linear simultaneous equations
$$(3)$$ Solving ordinary differential equations
$$(4)$$ Numerical integration method
$$(5)$$ Interpolation
$$(6)$$ Calculation of eigen values

A
$$E - 6,\,\,F - 1,\,\,G - 5,\,\,H - 3$$
B
$$E - 1,\,\,F - 6,\,\,G - 4,\,\,H - 3$$
C
$$E - 1,\,\,F - 3,\,\,G - 4,\,\,H - 2$$
D
$$E - 5,\,\,F - 3,\,\,G - 4,\,\,H - 1$$
3
GATE ECE 2005
MCQ (Single Correct Answer)
+1
-0.3
The following differential equation has $$3{{{d^2}y} \over {d{t^2}}} + 4{\left( {{{dy} \over {dt}}} \right)^3} + {y^2} + 2 = x$$
A
degree $$=2,$$ order $$=1$$
B
degree $$=1,$$ order $$=2$$
C
degree $$=4,$$ order $$=3$$
D
degree $$=2,$$ order $$=3$$
4
GATE ECE 2005
MCQ (Single Correct Answer)
+1
-0.3
A solution of the differential equation $${{{d^2}y} \over {d{x^2}}} - 5{{dy} \over {dx}} + 6y = 0\,$$ is given by
A
$$y = {e^{2x}} + {e^{ - 3x}}$$
B
$$y = {e^{2x}} + {e^{3x}}$$
C
$$y = {e^{ - 2x}} + {e^{3x}}$$
D
$$y = {e^{ - 2x}} + {e^{ - 3x}}$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12