GATE ECE

If $${V_i} = {V_1}\,\,\sin \left( {\omega \tau + \phi } \right),$$ then the minimum and maximum values of $$\phi $$ (in radians) are respectively
The transfer function $${V_o}\left( s \right)/{V_i}\left( s \right)$$ is





If these constellations are used for digital communications over an AWGN channel, then which of the following statements is true?

The ratio of the average energy of Constellation 1 to the average energy of Constellation 2 is

Assuming that the reconstruction levels of the quantizer are the mid-points of the decision boundaries, the ratio of signal power to quantization noise power is

The values of a and b are


If the initial state vector of the system is $$x\left( 0 \right) = \left[ {\matrix{ 1 \cr { - 2} \cr } } \right],$$
then the system response is $$x\left( t \right) = \left[ {\matrix{ {{e^{ - 2t}}} \cr { - 2{e^{ - 2t}}} \cr } } \right].$$
If the initial state vector of the system changes to $$x\left( 0 \right) = \left[ {\matrix{ 1 \cr { - 1} \cr } } \right],$$
then the system response becomes $$x\left( t \right) = \left[ {\matrix{ {{e^{ - t}}} \cr { - {e^{ - t}}} \cr } } \right].$$
The eigen value and eigen vector pairs $$\left( {{\lambda _{i,}}{V_i}} \right)$$ for the system are
Where 'ω' is the speed of the motor, 'ia' is the armature current and u is the armature voltage. The transfer function $${{\omega \left( s \right)} \over {U\left( s \right)}}$$ of the motor is
If the initial state vector of the system is $$x\left( 0 \right) = \left[ {\matrix{ 1 \cr { - 2} \cr } } \right],$$
then the system response is $$x\left( t \right) = \left[ {\matrix{ {{e^{ - 2t}}} \cr { - 2{e^{ - 2t}}} \cr } } \right].$$
If the initial state vector of the system changes to $$x\left( 0 \right) = \left[ {\matrix{ 1 \cr { - 1} \cr } } \right],$$
then the system response becomes $$x\left( t \right) = \left[ {\matrix{ {{e^{ - t}}} \cr { - {e^{ - t}}} \cr } } \right].$$
The system matrix a is
$${V_{R\,}}\, = \,10V$$ and $$R\, = \,10k\Omega $$

The voltage V0 is
$${V_{R\,}}\, = \,10V$$ and $$R\, = \,10k\Omega $$

The current i is





where $${H_0}$$ is a constant, a and b are the dimensions along the x-axis and the y-axis respectively. The mode of propagation in the waveguide is
The time average power flow density in Watts is

Kn = Kp = μnCOX$$\frac{W_n}{L_n}$$ = μpCOX$$\frac{W_P}{L_P}$$= 40 μA/V2 and their threshold voltages are VT = 1 V, the current I is:



Line 1: MVI A, B5H
2: MVI B, 0EH
3: XRI 69H
4: ADD B
5: ANI 9BH
6: CPI 9FH
7: STA 3010H
8: HLT
After execution of line of the program, the status of the CY and Z flags will be
Line 1: MVI A, B5H
2: MVI B, 0EH
3: XRI 69H
4: ADD B
5: ANI 9BH
6: CPI 9FH
7: STA 3010H
8: HLT
The contents of the accumulator just after execution of the ADD instruction in line 4 will be







