GATE ECE

Determine the ac small-signal mid-band and voltage gain $$\left( {{V_o}/{V_s}} \right),$$ input resistance (R1, and output resistance (R0) of the circuit. Assume $${V_{T\,\,}} = \,\,26\,mV.$$
The peak amplitude of the filter output is

If the control signal u is given by u=(-0.5-3-5)x+v, then the eigen values of the closed loop system will be

$$\overrightarrow E = \left( {\sqrt \pi } \right)\left( {10.0\,\widehat x + 11.8\,\widehat y} \right)\exp \left[ {j\left( {4\pi \times {{10}^8}\,t - k\,z} \right)} \right]$$
where $$\widehat x$$ and $$\widehat y$$ are unit vectors in the $$x$$- and $$y$$-directions respectively is incident normally on a semi-infinite block of ice as shown in Fig. For ice, $$\mu = {\mu _0},\,\,\,\sigma = 0$$ and $$\varepsilon = 9{\varepsilon _0}\left( {1 - j0.001} \right)$$.
(a) Calculate the average power density associated with the incident wave.
(b) Calculate the skin depth in ice.
(c) Estimate the average power density at a distance of 5 times the skins depth in the ice block, measured from the interface.


(a) Find $${V_0}$$ for $$t \le 0$$ and as $$t \to \infty $$.
(b) Write an expression for $${V_0}$$ as a function of time for $$0 \le t \le \infty $$.
(c) Evaluate $${V_0}$$ at $$t = 25\,\,\mu $$sec.

The Thevenin equivalent voltage VTH appearing between the terminals A and B of the network shown in Fig. is given by

For the network shown in Fig., evaluate the current I flowing through the 2Ω resistor using superposition theorem.



The value of R (in ohms) required for maximum power transfer in the network shown in Fig. is

The peak amplitude of the filter output is