GATE ECE


The load current I0 through RL is


The number of times the LED glows is ______.


X: The system is stable …
Y: The system is unstable …
Z: The test breaks down …
P: … when all elements are positive
Q: … when any one element is zero
R: … when there is a change in sign of
coefficients



This wave is incident upon a receiving antenna placed at the origin and whose radiated electric field towards the incident wave is given by the following equation:
$$${\overrightarrow E _{_a}} = \left( {{{\widehat a}_{_x}} + 2{{\widehat a}_{_y}}} \right){E_1}{1 \over r}{e^{ - jkr}}$$$The polarization of the incident wave, the polarization of the antenna and losses due to the polarization mismatch are, respectively,
The radiated power density is symmetrical with respect to $$\phi $$ and exists only in the upper hemisphere: $$0 \le \theta \le {\pi \over 2};\,\,\,\,0 \le \theta \le 2\pi ;$$
$${C_0}$$ is a constant. The power radiated by the antenna (in watts) and the maximum directivity of the antenna, respectively, are


P: As channel length reduces, OFF-state current increases.
Q:As channel length reduces, output resistance increases.
R: As channel length reduces, threshold voltage remains constant.
S: As channel length reduces, ON current increases.
The initial conditions are $$x\left[ 0 \right] = 1,\,\,x\left[ 1 \right] = 1$$ and $$x\left[ n \right] = 0$$ for $$n < 0.$$ The value of $$x\left[ {12} \right]$$ is __________.
$$\left\{ {\left( {\rho ,\varphi ,{\rm Z}} \right):3 \le \rho \le 5,\,\,{\pi \over 8} \le \phi \le {\pi \over 4},\,\,3 \le z \le 4.5} \right\}$$ in cylindrical coordinates has volume of ___________.
$$P:$$ If $$f(x)$$ is continuous at $$x = {x_0},$$ then it is also differentiable at $$x = {x_0},$$
$$Q:$$ If $$f(x)$$ is continuous at $$x = {x_0},$$ then it may not be differentiable at $$x = {x_0},$$
$$R:$$ If $$f(x)$$ is differentiable at $$x = {x_0},$$ then it is also continuous at $$x = {x_0},$$
The probability $$P\left( {X + Y \le 1} \right)$$ is ________.
$$\sum\limits_{k = 1}^3 {{a_k}\,\,\cos \,\left( {k{\omega _0}t} \right),\,\,\,} $$ where $${a_k} \ne 0,\,\,{\omega _0} \ne 0$$.
The source has nonzero impedance. Which one of the following is a possible form of the output measured across a resistor in the network?
An AC voltage source V = 10 sin(t) volts is applied to the following network. Assume that R1 = 3 kΩ, R2 = 6 kΩ and R3 = 9 kΩ and that the diode is ideal.

RMS current Irms (in mA) through the diode is _________.
In the circuit shown in the figure, the maximum power (in watt) delivered to the resistor R is _________.

The initial conditions are x$$\left[ 0 \right]$$ = 1, x$$\left[ 1 \right]$$=1 and x$$\left[ n \right]$$=0 for n< 0. The value of x$$\left[ 12 \right]$$ is _____________________.
$$x\left[ n \right]$$= $${a^n}u\left[ n \right] + {b^{\partial n}}u\left[ n \right]$$ , where u[n] denotes the unit step sequence and 0<$$\left| a \right| < \left| b \right| < 1.$$
The region of convergence (ROC) of the z-transform of $$\left[ n \right]$$ is
If X$$({e^{t\omega }})$$is the discrete-time Fourier transform of x[n],
then $${1 \over \pi }\int\limits_{ - \pi }^\pi X ({e^{j\omega }}){\sin ^2}(2\omega )d\omega $$ is equal to ____________.
X: Impulse P: 1 $$ - {e^{ - t/T}}$$
Y: Unit step Q: t $$ - T(1 - {e^{ - t/T}})$$
Z: Ramp R: $${e^{ - t/T}}$$
