1
MHT CET 2020 16th October Evening Shift
MCQ (Single Correct Answer)
+2
-0

The rate at which the metal cools in moving air is proportional to the difference of temperatures between the metal and air. If the air temperature is 290 K and the metal temperature drops from 370 K to 330 K in 10 min , then the time required to drop the temperature upto 295 K is

A
30 min
B
35 min
C
20 min
D
40 min
2
MHT CET 2020 16th October Evening Shift
MCQ (Single Correct Answer)
+2
-0

The micro-organisms double themselves in 3 h. Assuming that the quantity increases at a rate proportional to it self, then the number of times it multiplies themselves in 18 yr is

A
32
B
64
C
40
D
128
3
MHT CET 2020 16th October Evening Shift
MCQ (Single Correct Answer)
+2
-0

The particular solution of the differential equation $$y\left(\frac{d x}{d y}\right)=x \log x$$ at $$x=e$$ and $$y=1$$ is

A
$$x y=2$$
B
$$x=e^y$$
C
$$e^{x y}=2$$
D
$$\log x=2 y$$
4
MHT CET 2020 16th October Morning Shift
MCQ (Single Correct Answer)
+2
-0

The differential equation obtained from the function $$y=a(x-a)^2$$ is

A
$$8 y^2=\left(\frac{d y}{d x}\right)^2\left[x+\frac{1}{4 y}\left(\frac{d y}{d x}\right)^2\right]^2$$
B
$$4 y^2=\left(\frac{d y}{d x}\right)^2\left[x-\frac{1}{4 y}\left(\frac{d y}{d x}\right)^2\right]^2$$
C
$$2 y^2=\left(\frac{d y}{d x}\right)^2\left[x-\frac{1}{4 y}\left(\frac{d y}{d x}\right)^2\right]^2$$
D
$$8 y^2=\left(\frac{d y}{d x}\right)^2\left[x-\frac{1}{4 y}\left(\frac{d y}{d x}\right)^2\right]^2$$
MHT CET Subjects
EXAM MAP