1
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The population of a town increases at a rate proportional to the population at that time. If the population increases from forty thousand to eighty thousand in 20 years, then the population in another 40 years will be

A
240000
B
160000
C
320000
D
640000
2
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

A particular solution of $3 \mathrm{e}^x \tan y \mathrm{~d} x+\left(1-\mathrm{e}^x\right) \sec ^2 y \mathrm{~d} y=0$ with $y(1)=\frac{\pi}{4}$ is

A
$\quad \tan y=\left(\frac{1-\mathrm{e}^3}{1-\mathrm{e}^x}\right)^3$
B
$\quad \tan y=\left(\frac{1-\mathrm{e}^2}{1-\mathrm{e}^x}\right)^3$
C
$\quad \tan y=\left(\frac{1-\mathrm{e}}{1-\mathrm{e}^x}\right)^3$
D
$\quad \tan y=\left(\frac{1-\mathrm{e}^x}{1-\mathrm{e}}\right)^3$
3
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the curve passing through the origin and satisfying the equation $\left(1+x^2\right) \frac{\mathrm{d} y}{\mathrm{~d} x}+2 x y=4 x^2$, is

A
$3\left(1+x^2\right) y=4 x^3$
B
$3\left(1-x^2\right) y=4 x^3$
C
$3\left(1+x^2\right)=x^3$
D
$\quad 4\left(1-x^2\right)=x^3$
4
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The differential equation of all circles having their centres on the line $y=5$ and touching ( X -axis) is $\qquad$

A
$\quad(5-y) \frac{\mathrm{d} y}{\mathrm{~d} x}+y^2-10 y=0$
B
$\quad(5-y)^2 \frac{\mathrm{~d}^2 y}{\mathrm{~d} x^2}+y^2-10 y=0$
C
$\quad(5-y) \frac{\mathrm{d} y}{\mathrm{~d} x}+y-10=0$
D
$\quad(5-y)^2\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^2+y^2-10 y=0$
MHT CET Subjects
EXAM MAP