1
MHT CET 2020 16th October Evening Shift
MCQ (Single Correct Answer)
+2
-0

The particular solution of the differential equation $$y\left(\frac{d x}{d y}\right)=x \log x$$ at $$x=e$$ and $$y=1$$ is

A
$$x y=2$$
B
$$x=e^y$$
C
$$e^{x y}=2$$
D
$$\log x=2 y$$
2
MHT CET 2020 16th October Morning Shift
MCQ (Single Correct Answer)
+2
-0

The differential equation obtained from the function $$y=a(x-a)^2$$ is

A
$$8 y^2=\left(\frac{d y}{d x}\right)^2\left[x+\frac{1}{4 y}\left(\frac{d y}{d x}\right)^2\right]^2$$
B
$$4 y^2=\left(\frac{d y}{d x}\right)^2\left[x-\frac{1}{4 y}\left(\frac{d y}{d x}\right)^2\right]^2$$
C
$$2 y^2=\left(\frac{d y}{d x}\right)^2\left[x-\frac{1}{4 y}\left(\frac{d y}{d x}\right)^2\right]^2$$
D
$$8 y^2=\left(\frac{d y}{d x}\right)^2\left[x-\frac{1}{4 y}\left(\frac{d y}{d x}\right)^2\right]^2$$
3
MHT CET 2020 16th October Morning Shift
MCQ (Single Correct Answer)
+2
-0

The differential equation of all lines perpendicular to the line $$5 x+2 y+7=0$$ is

A
$$2 d y-5 d x=0$$
B
$$5 d y-2 d x=0$$
C
$$2 d y-3 d x=0$$
D
$$3 d y-2 d x=0$$
4
MHT CET 2020 16th October Morning Shift
MCQ (Single Correct Answer)
+2
-0

The bacteria increases at the rate proportional to the number of bacteria present. If the original number '$$N$$' doubles in $$4 \mathrm{~h}$$, then the number of bacteria in $$12 \mathrm{~h}$$ will be

A
4N
B
8N
C
6N
D
3N
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12