1
MHT CET 2020 16th October Evening Shift
MCQ (Single Correct Answer)
+2
-0

The particular solution of the differential equation $$y\left(\frac{d x}{d y}\right)=x \log x$$ at $$x=e$$ and $$y=1$$ is

A
$$x y=2$$
B
$$x=e^y$$
C
$$e^{x y}=2$$
D
$$\log x=2 y$$
2
MHT CET 2020 16th October Morning Shift
MCQ (Single Correct Answer)
+2
-0

The differential equation obtained from the function $$y=a(x-a)^2$$ is

A
$$8 y^2=\left(\frac{d y}{d x}\right)^2\left[x+\frac{1}{4 y}\left(\frac{d y}{d x}\right)^2\right]^2$$
B
$$4 y^2=\left(\frac{d y}{d x}\right)^2\left[x-\frac{1}{4 y}\left(\frac{d y}{d x}\right)^2\right]^2$$
C
$$2 y^2=\left(\frac{d y}{d x}\right)^2\left[x-\frac{1}{4 y}\left(\frac{d y}{d x}\right)^2\right]^2$$
D
$$8 y^2=\left(\frac{d y}{d x}\right)^2\left[x-\frac{1}{4 y}\left(\frac{d y}{d x}\right)^2\right]^2$$
3
MHT CET 2020 16th October Morning Shift
MCQ (Single Correct Answer)
+2
-0

The differential equation of all lines perpendicular to the line $$5 x+2 y+7=0$$ is

A
$$2 d y-5 d x=0$$
B
$$5 d y-2 d x=0$$
C
$$2 d y-3 d x=0$$
D
$$3 d y-2 d x=0$$
4
MHT CET 2020 16th October Morning Shift
MCQ (Single Correct Answer)
+2
-0

The bacteria increases at the rate proportional to the number of bacteria present. If the original number '$$N$$' doubles in $$4 \mathrm{~h}$$, then the number of bacteria in $$12 \mathrm{~h}$$ will be

A
4N
B
8N
C
6N
D
3N
MHT CET Subjects
EXAM MAP