1
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The order of the differential equation, whose general solution is given by

$$y=\left(c_1+c_2\right) \cos \left(x+c_3\right)-c_4 e^{x+c 5}$$

where $c_1, c_2, c_3, c_4$ and $c_5$ are arbitrary constant, is

A
5
B
4
C
3
D
2
2
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\cos x \frac{\mathrm{~d} y}{\mathrm{~d} x}-y \sin x=6 x, 0

A
$y=\cos x+3 x^2+\mathrm{c}$, where c is a constant of integration.
B
$y+\cos x=3 x^2+\mathrm{c}$, where c is a constant of integration.
C
$y=3 x^2 \cos x+\cos x$, where c is a constant of integration.
D
$y \cdot \cos x=3 x^2+\mathrm{c}$, where c is a constant of integration.
3
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The general solution of $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x+y+1}{x+y-1}$ is

A
$y=x+\log (x+y)+\mathrm{c}$, where c is a constant of integration.
B
$y=x-\log (x+y)+\mathrm{c}$, where c is a constant of integration.
C
$y=x-\log (2 x+y)+\mathrm{c}$, where c is a constant of integration.
D
$y=x^2+\log (x+y)+\mathrm{c}$, where c is a constant of integration.
4
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

A radio-active substance has a half-life of h days, then its initial decay rate is given by (where radio-active substance has initial mass $\mathrm{m}_0$)

A
$\frac{\mathrm{m}_0}{\mathrm{~h}}(\log 2)$
B
$\left(\mathrm{m}_0 \mathrm{~h}\right)(\log 2)$
C
$-\frac{\mathrm{m}_0}{\mathrm{~h}}(\log 2)$
D
$-\left(m_0 h\right)(\log 2)$
MHT CET Subjects
EXAM MAP