1
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The order of the differential equation, whose general solution is given by

$$y=\left(c_1+c_2\right) \cos \left(x+c_3\right)-c_4 e^{x+c 5}$$

where $c_1, c_2, c_3, c_4$ and $c_5$ are arbitrary constant, is

A
5
B
4
C
3
D
2
2
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\cos x \frac{\mathrm{~d} y}{\mathrm{~d} x}-y \sin x=6 x, 0

A
$y=\cos x+3 x^2+\mathrm{c}$, where c is a constant of integration.
B
$y+\cos x=3 x^2+\mathrm{c}$, where c is a constant of integration.
C
$y=3 x^2 \cos x+\cos x$, where c is a constant of integration.
D
$y \cdot \cos x=3 x^2+\mathrm{c}$, where c is a constant of integration.
3
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The general solution of $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x+y+1}{x+y-1}$ is

A
$y=x+\log (x+y)+\mathrm{c}$, where c is a constant of integration.
B
$y=x-\log (x+y)+\mathrm{c}$, where c is a constant of integration.
C
$y=x-\log (2 x+y)+\mathrm{c}$, where c is a constant of integration.
D
$y=x^2+\log (x+y)+\mathrm{c}$, where c is a constant of integration.
4
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

A radio-active substance has a half-life of h days, then its initial decay rate is given by (where radio-active substance has initial mass $\mathrm{m}_0$)

A
$\frac{\mathrm{m}_0}{\mathrm{~h}}(\log 2)$
B
$\left(\mathrm{m}_0 \mathrm{~h}\right)(\log 2)$
C
$-\frac{\mathrm{m}_0}{\mathrm{~h}}(\log 2)$
D
$-\left(m_0 h\right)(\log 2)$
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12