The line of intersection of the planes $\bar{r} \cdot(3 \hat{i}-\hat{j}+\hat{k})=1 \quad$ and $\quad \bar{r} \cdot(\hat{i}+4 \hat{j}-2 \hat{k})=2 \quad$ is parallel to the vector
The lines $\overline{\mathrm{r}}=\overline{\mathrm{a}}+\lambda(\overline{\mathrm{b}} \times \overline{\mathrm{c}})$ and $\overline{\mathrm{r}}=\overline{\mathrm{c}}+\lambda(\overline{\mathrm{a}} \times \overline{\mathrm{b}})$ will intersect if
If $\bar{a}=\hat{i}+\hat{j}, \bar{b}=2 \hat{i}-\hat{k}$ then the point of intersection of the lines $\overline{\mathrm{r}} \times \overline{\mathrm{a}}=\overline{\mathrm{b}} \times \overline{\mathrm{a}}$ and $\overline{\mathrm{r}} \times \overline{\mathrm{b}}=\overline{\mathrm{a}} \times \overline{\mathrm{b}}$ is
If the projection of $\bar{a}$ on $\bar{b}+\bar{c}$ is twice the projection of $\bar{b}+\bar{c}$ on $\bar{a}$ also if $|\bar{b}|=2 \sqrt{2},|\bar{c}|=4$ and the angle between $\overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ is $\frac{\pi}{4}$ then $|\overline{\mathrm{a}}|=$