If the points $\mathrm{A}(1,1,2), \mathrm{B}(2,1, \mathrm{p}), \mathrm{C}(1,0,3)$ and $D(2,2,0)$ are coplanar then the value of $p$ is
If $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$ are unit vectors and $\theta$ is the angle between them, then $\tan \frac{\theta}{2}=$
If $\bar{a}=\frac{1}{\sqrt{10}}(3 \hat{i}+\hat{k})$ and $\bar{b}=\frac{1}{7}(2 \hat{i}+3 \hat{j}-6 \hat{k})$ then the value of $(2 \overline{\mathrm{a}}-\overline{\mathrm{b}}) \cdot[(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times(\overline{\mathrm{a}}+2 \overline{\mathrm{~b}})]=$
Let $\bar{a}$ and $\bar{b}$ be two vectors such that $|\overline{\mathrm{a}}|=1,|\overline{\mathrm{~b}}|=4, \overline{\mathrm{a}} \cdot \overline{\mathrm{b}}=2$. If $\overline{\mathrm{c}}=(2 \overline{\mathrm{a}} \times \overline{\mathrm{b}})-3 \overline{\mathrm{~b}}$, then the angle between $\overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ is