1
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the points $\mathrm{A}(1,1,2), \mathrm{B}(2,1, \mathrm{p}), \mathrm{C}(1,0,3)$ and $D(2,2,0)$ are coplanar then the value of $p$ is

A
0
B
-1
C
1
D
2
2
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$ are unit vectors and $\theta$ is the angle between them, then $\tan \frac{\theta}{2}=$

A
$|\overline{\mathrm{a}}-\overline{\mathrm{b}}|$
B
$|\vec{a}+\vec{b}|$
C
$\frac{|\vec{a}+\vec{b}|}{|\vec{a}-\vec{b}|}$
D
$\frac{|\bar{a}-\bar{b}|}{|\bar{a}+\bar{b}|}$
3
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\bar{a}=\frac{1}{\sqrt{10}}(3 \hat{i}+\hat{k})$ and $\bar{b}=\frac{1}{7}(2 \hat{i}+3 \hat{j}-6 \hat{k})$ then the value of $(2 \overline{\mathrm{a}}-\overline{\mathrm{b}}) \cdot[(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times(\overline{\mathrm{a}}+2 \overline{\mathrm{~b}})]=$

A
$\frac{1}{5}$
B
-5
C
5
D
$-\frac{1}{5}$
4
MHT CET 2025 20th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\bar{a}$ and $\bar{b}$ be two vectors such that $|\overline{\mathrm{a}}|=1,|\overline{\mathrm{~b}}|=4, \overline{\mathrm{a}} \cdot \overline{\mathrm{b}}=2$. If $\overline{\mathrm{c}}=(2 \overline{\mathrm{a}} \times \overline{\mathrm{b}})-3 \overline{\mathrm{~b}}$, then the angle between $\overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ is

A
$\frac{\pi}{3}$
B
$\frac{\pi}{6}$
C
$\frac{3 \pi}{4}$
D
$\frac{5 \pi}{6}$
MHT CET Subjects
EXAM MAP