Let $\overline{\mathrm{a}}$ and $\overline{\mathrm{c}}$ be unit vectors at an angle $\frac{\pi}{3}$ with each other. If $(\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})) \cdot(\overline{\mathrm{a}} \times \overline{\mathrm{c}})=5$, then $[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]=$
Let $\bar{a}, \bar{b}$, and $\bar{c}$ be unit vectors. Suppose that $\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}=\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}=0$ and if the angle between $\overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ is $\frac{\pi}{6}$, then $\overline{\mathrm{a}}$ is
If $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$ are unit vectors such that $|\overline{\mathrm{a}}+\overline{\mathrm{b}}|=\sqrt{3}$, then the angle between $\bar{a}$ and $\bar{b}$ is
Three vectors $\hat{\mathrm{i}}-\hat{\mathrm{k}}, \lambda \hat{\mathrm{i}}+\hat{\mathrm{j}}+(1-\lambda) \hat{\mathrm{k}}$ and $\mu \hat{\mathrm{i}}+\lambda \hat{\mathrm{j}}+(1+\lambda-\mu) \hat{\mathrm{k}}$ represents coterminous edges of a parallelopiped, then the volume of the parallelopiped depends on.