1
MHT CET 2020 16th October Morning Shift
MCQ (Single Correct Answer)
+2
-0

The integrating factor of the differential equation $$\left(1+x^2\right) d t=\left(\tan ^{-1} x-t\right) d x$$ is

A
$$e^{\tan ^{-1} x}$$
B
$$-e^{\frac{\left(\tan ^{-1} x\right)^2}{2}}$$
C
$$-e^{\tan ^{-1} x}$$
D
$$e^{\frac{\left(\tan ^{-1} x\right)^2}{2}}$$
2
MHT CET 2019 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The order of the differential equation of all circles which lie in the first quadrant and touch both the axes is......

A
two
B
three
C
one
D
four
3
MHT CET 2019 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The solution of differential equation $\left(x^2+1\right) \frac{d y}{d x}+\left(y^2+1\right)=0$ is $\ldots$

A
$x+y=c$
B
$\left(x^2+1\right)\left(y^2+1\right)=c$
C
$x^2=y^2+c$
D
$\tan ^{-1} x+\tan ^{-1} y=c$
4
MHT CET 2019 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The particular solution of the differential equation $\log \left(\frac{d y}{d x}\right)=x$, when $x=0, y=1$ is ..............

A
$y=e^x+2$
B
$y=-e^x$
C
$y=-e^x+2$
D
$y=e^x$
MHT CET Subjects
EXAM MAP