1
MHT CET 2020 19th October Evening Shift
MCQ (Single Correct Answer)
+2
-0

The general solution of the differential equation $\left(1+y^2\right)+\left(x-e^{\tan ^{-1} y}\right) \frac{d y}{d x}=0$ is

A
$x \cdot e^{\tan ^{-1} y}=\frac{\left(e^{\tan ^{-1} y}\right)^2}{2}+C$
B
$e^{\tan ^{-1} y}=\left(e^{\tan ^{-1} x}\right)^2+C$
C
$x \cdot e^{\tan ^{-1} y}=\frac{\left(e^{\tan ^{-1} x} x\right)^2}{2}+C$
D
$e^{\tan ^{-1} y}=\left(e^{\tan ^{-1} y}\right)^2+C$
2
MHT CET 2020 19th October Evening Shift
MCQ (Single Correct Answer)
+2
-0

The order and degree of the differential equation $\left[1+\frac{1}{\left(\frac{d y}{d x}\right)^2}\right]^{\frac{5}{3}}=5 \frac{d^2 y}{d x^2}$ are respectively

A
3, 2
B
5, 2
C
2, 5
D
2, 3
3
MHT CET 2020 19th October Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the population grows at the rate of $8 \%$ per year, then the time taken for the population to be doubled, is (Given $\log 2=0.6912$)

A
10.27 yr
B
4.3 yr
C
6.8 yr
D
8.64 yr
4
MHT CET 2020 16th October Evening Shift
MCQ (Single Correct Answer)
+2
-0

The integrating factor of the differential equation $$\sin y\left(\frac{d y}{d x}\right)=\cos y(1-x \cos y)$$ is

A
$$e^{\sin y}$$
B
$$e^{-x}$$
C
$$e^{-\cos y}$$
D
$$e^{-y}$$
MHT CET Subjects
EXAM MAP