1
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The general solution of the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}+\sin \left(\frac{x+y}{2}\right)=\sin \left(\frac{x-y}{2}\right)$ is

A
$\log \tan \left(\frac{y}{2}\right)=\mathrm{c}-2 \sin \frac{x}{2}$, where c is the constant of integration
B
$\log \tan \left(\frac{y}{4}\right)=\mathrm{c}-2 \sin \left(\frac{x}{2}\right)$, where c is the constant of integration
C
$\log \left[\tan \left(\frac{y}{2}+\frac{\pi}{4}\right)\right]=\mathrm{c}-2 \sin x$, where c is the constant of integration
D
$\log \left[\tan \left(\frac{y}{4}+\frac{\pi}{4}\right)\right]=\mathrm{c}-2 \sin \frac{x}{2}$, where c is the constant of integration
2
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the curve passing through $\left(2, \frac{9}{2}\right)$ and having the slope $\left(1-\frac{1}{x^2}\right)$ at $(x, y)$ is

A
$x y=x^2+2 x+1$
B
$x y=x^2+x+2$
C
$x y=x^2+x+5$
D
$x y=x^2+2 x+5$
3
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $y=y(x)$ and $\left(\frac{2+\sin x}{y+1}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=-\cos x, y(0)=1$, then $y\left(\frac{\pi}{2}\right)=$

A
$\frac{1}{3}$
B
$\frac{2}{3}$
C
$-\frac{1}{3}$
D
1
4
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The degree of the differential equation $\frac{\mathrm{d}^2 y}{\mathrm{~d} x^2}+3\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^2=x^2 \log \left(\frac{\mathrm{~d}^2 y}{\mathrm{~d} x^2}\right)$ is

A
1
B
2
C
3
D
Not defined
MHT CET Subjects
EXAM MAP