1
MHT CET 2025 26th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The differential equation which represents the family of curves $y=c_1 e^{c_2 x}$, where $c_1, c_2$ are arbitrary constants is

A
$y^{\prime \prime}=y^{\prime} y$
B
$y y^{\prime \prime}=y^{\prime}$
C
$y y^{\prime \prime}=\left(y^{\prime}\right)^2$
D
$y^{\prime}=y^2$
2
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The rate of increase of the population of a city is proportional to the population present at that instant. In the period of 40 years the population increased from 30,000 to 40,000 . At any time t the population is $(a)(b)^{\frac{t}{40}}$. Then the values of $a$ and $b$ are respectively

A
$30,000, \frac{2}{3}$
B
$30,000, \frac{4}{3}$
C
$40,000, \frac{2}{3}$
D
$40,000, \frac{3}{4}$
3
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the curve passing through origin and satisfying $\left(1+x^2\right) \frac{\mathrm{d} y}{\mathrm{~d} x}+2 x y=4 x^2$ is

A
$y\left(1+x^2\right)=4 x^3$
B
$4\left(1+x^2\right)=4+y^2$
C
$3 y\left(1+x^2\right)=4 x^3$
D
$1+y^2=4 x^3+1$
4
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The order of the differential equation whose general solution is given by $y=\left(\mathrm{C}_1+\mathrm{C}_2\right) \sin \left(x+\mathrm{C}_3\right)-\mathrm{C}_4 \mathrm{e}^{x+\mathrm{C}_5}$ is (where $\mathrm{C}_1, \mathrm{C}_2, \mathrm{C}_3, \mathrm{C}_4, \mathrm{C}_5$ are arbitrary constants)

A
5
B
4
C
2
D
3
MHT CET Subjects
EXAM MAP