1
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The differential equation of family of circles, whose centres are on the X -axis and also touch the Y -axis is

A
$4\left(x+y \frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^2 x^2=\left(x^2+y^2\right)^2$
B
$\left(x+y \frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^2 x^2=\left(x^2+y^2\right)^2$
C
$2\left(x+y \frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^2 x^2=\left(x^2+y^2\right)^2$
D
$\left(x+y \frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^2 x^2=4\left(x^2+y^2\right)^2$
2
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

A body cools according to Newton's law of cooling from $100^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ in 15 minutes. If the temperature of the surrounding is $20^{\circ} \mathrm{C}$, then the temperature of the body after cooling down for one hour is

A
$30^{\circ} \mathrm{C}$
B
$25^{\circ} \mathrm{C}$
C
$35^{\circ} \mathrm{C}$
D
$40^{\circ} \mathrm{C}$
3
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $y=y(x)$ is the solution of the differential equation $\left(\frac{5+\mathrm{e}^x}{2+y}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}+\mathrm{e}^x=0$ satisfying $y(0)=1$, then a value of $y(\log 13)$ is

A
$-$1
B
0
C
1
D
2
4
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $(2+\sin x) \frac{\mathrm{d} y}{\mathrm{~d} x}+(y+1) \cos x=0$ and $y(0)=1$ then $y\left(\frac{\pi}{2}\right)$ is equal to

A
$-\frac{2}{3}$
B
$-\frac{1}{3}$
C
$\frac{4}{3}$
D
  $\frac{1}{3}$
MHT CET Subjects
EXAM MAP