1
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Integrating factor of the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}+y=\frac{1+y}{x}$ is

A
$\frac{x}{\mathrm{e}^x}$
B
$x e^x$
C
$e^x$
D
$\frac{\mathrm{e}^x}{x}$
2
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The population of a town increases at a rate proportional to the population at that time. If the population increases from 40 thousand to 80 thousand in 40 years, then the population in another 40 years will be

A
180000
B
128000
C
160000
D
256000
3
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $y=y(x)$ is the solution of the differential equation $x \frac{\mathrm{dy}}{\mathrm{d} x}+2 y=x^2$ satisfying $y(1)=1$, then the value of $y\left(\frac{1}{2}\right)$ is

A
$\frac{7}{64}$
B
  $\frac{1}{4}$
C
$\frac{13}{6}$
D
$\frac{49}{16}$
4
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The curve satisfying the differential equation $y \mathrm{~d} x-\left(x+3 y^2\right) \mathrm{dy}=0$ and passing through the point $(1,1)$ also passes through the point

A
$\left(\frac{1}{4}, \frac{1}{2}\right)$
B
$\left(\frac{1}{4},-\frac{1}{2}\right)$
C
$\left(\frac{1}{3},-\frac{1}{3}\right)$
D
$\left(-\frac{1}{3}, \frac{1}{3}\right)$
MHT CET Subjects
EXAM MAP