1
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $y=y(x)$ is the solution of the differential equation $x \frac{\mathrm{dy}}{\mathrm{d} x}+2 y=x^2$ satisfying $y(1)=1$, then the value of $y\left(\frac{1}{2}\right)$ is

A
$\frac{7}{64}$
B
  $\frac{1}{4}$
C
$\frac{13}{6}$
D
$\frac{49}{16}$
2
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The curve satisfying the differential equation $y \mathrm{~d} x-\left(x+3 y^2\right) \mathrm{dy}=0$ and passing through the point $(1,1)$ also passes through the point

A
$\left(\frac{1}{4}, \frac{1}{2}\right)$
B
$\left(\frac{1}{4},-\frac{1}{2}\right)$
C
$\left(\frac{1}{3},-\frac{1}{3}\right)$
D
$\left(-\frac{1}{3}, \frac{1}{3}\right)$
3
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The general solution of the differential equation $\frac{1}{x} \frac{\mathrm{~d} y}{\mathrm{~d} x}=\tan ^{-1}$ is

A
$y+\frac{x^2 \tan ^{-1} x}{2}+\mathrm{c}=0$, where c is a constant of integration.
B
$y+x \tan ^{-1} x+\mathrm{c}=0$, where c is a constant integration.
C
$y-x-\tan ^{-1} x+\mathrm{c}=0$, where is a constant of integration.
D
$y=\frac{x^2 \tan ^{-1} x}{2}-\frac{1}{2}\left(x-\tan ^{-1} x\right)+\mathrm{c}$, where c is constant of integration.
4
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The differential equation obtained by eliminating arbitrary constant from the equation $y^2=(x+c)^3$ is

A
$\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^3=27 y$
B
$\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^3=-27 y$
C
$8\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^3=27 y$
D
$ 8\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^3+27 y=0$
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12