1
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $y(x)$ is the solution of the differential equation $(x+2) \frac{\mathrm{d} y}{\mathrm{~d} x}=x^2+4 x-9, x \neq-2$ and $y(0)=0$, then $y(-4)$ is equal to

A
0
B
1
C
$-$1
D
2
2
MHT CET 2024 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The bacteria increase at the rate proportional to the number of bacteria present. If the original number N doubles in 8 hours, then the number of bacteria in 24 hours will be

A
8 N
B
16 N
C
32 N
D
64 N
3
MHT CET 2024 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The general solution of $\frac{\mathrm{d} y}{\mathrm{~d} x}+\sin \left(\frac{x+y}{2}\right)=\sin \left(\frac{x-y}{2}\right)$ is

A
$\log \tan \left(\frac{y}{2}\right)=\mathrm{C}-2 \sin x$
B
$\log \tan \left(\frac{y}{4}\right)=\mathrm{C}-2 \sin \left(\frac{x}{2}\right)$
C
$\log \tan \left(\frac{y}{2}+\frac{\pi}{4}\right)=\mathrm{C}-2 \sin x$
D
$\log \tan \left(\frac{y}{2}+\frac{\pi}{4}\right)=\mathrm{C}-2 \sin \left(\frac{x}{2}\right)$
4
MHT CET 2024 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The particular solution of the differential equation, $x y \frac{\mathrm{~d} y}{\mathrm{~d} x}=x^2+2 y^2$ when $y(1)=0$ is

A
$\frac{x^2+y^2}{x^3}=1$
B
$x^2+y^2=x$
C
$x^2+y^2=x^4$
D
$x^2+2 y^2=x^4$
MHT CET Subjects
EXAM MAP