1
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $\bar{a}=\hat{i}+\hat{j}-\hat{k}$ and $\bar{c}=5 \hat{i}-3 \hat{j}+2 \hat{k}$ and if $\overline{\mathrm{b}} \times \overline{\mathrm{c}}=\overline{\mathrm{a}}$ then $|\overline{\mathrm{b}}|=$

A
$\sqrt{113}$
B
$\sqrt{114}$
C
$\sqrt{117}$
D
$\sqrt{119}$
2
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\bar{a}=\hat{i}+\hat{j}+\hat{k}, \bar{b}=\hat{j}-\hat{k}$ then a vector $\bar{c}$ such that $\overline{\mathrm{a}} \times \overline{\mathrm{c}}=\overline{\mathrm{b}}$ and $\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}=3$ is

A
$\frac{5}{3} \hat{\mathrm{i}}+\frac{2}{3} \hat{\mathrm{j}}+\frac{2}{3} \hat{\mathrm{k}}$
B
$\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}$
C
$\hat{\mathrm{i}}+2 \hat{\mathrm{k}}$
D
$\quad 2 \hat{i}-3 \hat{j}+4 \hat{k}$
3
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

A tetrahedron has vertices $\mathrm{O}(0,0,0), \mathrm{A}(1,2,1)$, $B(2,1,3), C(-1,1,2)$. Then the angle between the faces OAB and ABC will be

A
$\cos ^{-1}\left(\frac{19}{35}\right)$
B
$\cos ^{-1}\left(\frac{1}{35}\right)$
C
$\cos ^{-1}\left(\frac{9}{35}\right)$
D
$\cos ^{-1}\left(\frac{4}{35}\right)$
4
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The position vectors of the points $A, B, C$ are $\hat{i}+2 \hat{j}-\hat{k}, \hat{i}+\hat{j}+\hat{k}, 2 \hat{i}+3 \hat{j}+2 \hat{k}$ respectively. If $A$ is chosen as the origin, then the cross product of position vectors of $B$ and $C$ are

A
$-5 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}}$
B
$-\hat{\mathrm{i}}+0 \hat{\mathrm{j}}-\hat{\mathrm{k}}$
C
$\hat{\mathrm{i}}-\hat{\mathrm{k}}$
D
$5 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}-\hat{\mathrm{k}}$
MHT CET Subjects
EXAM MAP