1
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the lengths of three vectors $\bar{a}, \bar{b}$ and $\bar{c}$ are $5,12,13$ units respectively, and each one is perpendicular to the sum of the other two, then $|\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}}|=\ldots \ldots$.

A
$\sqrt{338}$
B
169
C
338
D
676
2
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The projection of the line segment joining $\mathrm{P}(2,-1,0)$ and $\mathrm{Q}(3,2,-1)$ on the line whose direction ratios are $1,2,2$ is

A
$\frac{1}{3}$
B
$\frac{2}{3}$
C
$\frac{4}{3}$
D
$\frac{5}{3}$
3
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\bar{a}, \bar{b}, \bar{c}$ are three unit vectors such that $|\overline{\mathrm{a}}+\overline{\mathrm{b}}|^2+|\overline{\mathrm{a}}+\overline{\mathrm{c}}|^2=8$, then $|\overline{\mathrm{a}}+3 \overline{\mathrm{~b}}|^2+|\overline{\mathrm{a}}+3 \overline{\mathrm{c}}|^2=$

A
26
B
32
C
22
D
36
4
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

$\bar{a}=\hat{i}-\hat{j}, \bar{b}=\hat{j}-\hat{k}, \bar{c}=\hat{k}-\hat{i}$ then a unit vector $\bar{d}$ such that $\overline{\mathrm{a}} \cdot \overline{\mathrm{d}}=0=[\overline{\mathrm{b}} \overline{\mathrm{c}} \overline{\mathrm{d}}]$ is

A
$\pm\left(\frac{\hat{\mathrm{i}}+\hat{\mathrm{j}}+3 \hat{\mathrm{k}}}{\sqrt{11}}\right)$
B
$\pm\left(\frac{-\hat{\mathrm{j}}+\hat{\mathrm{k}}}{\sqrt{2}}\right)$
C
$\pm\left(\frac{\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}}{\sqrt{3}}\right)$
D
$\pm\left(\frac{\hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}}}{\sqrt{6}}\right)$
MHT CET Subjects
EXAM MAP