1
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the vectors $m \hat{i}+m \hat{j}+n \hat{k}, \hat{i}+\hat{k}, n \hat{i}+n \hat{j}+p \hat{k}$ lie in a plane then…

A
$\mathrm{m}+\mathrm{n}+\mathrm{p}=0$
B
$\mathrm{m}, \mathrm{n}, \mathrm{p}$ are in A.P.
C
$\mathrm{m}, \mathrm{n}, \mathrm{p}$ are in G.P.
D
$n, m, p$ are in G.P.
2
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The area of a parallelogram whose diagonals are the vectors $2 \bar{a}-\bar{b}$ and $4 \bar{a}-5 \bar{b}$, where $\bar{a}$ and $\bar{b}$ are unit vectors forming an angle of $45^{\circ}$ is

A
$3 \sqrt{2}$ sq. units
B
$\frac{3}{\sqrt{2}}$ sq. units
C
$\sqrt{2}$ sq. units
D
$\frac{\sqrt{2}}{3}$ sq. units
3
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

$\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ are nonzero vectors such that $\overline{\mathrm{a}}$ is perpendicular to $\overline{\mathrm{b}}$ and $\overline{\mathrm{c}},|\overline{\mathrm{a}}|=1,|\overline{\mathrm{~b}}|=2,|\overline{\mathrm{c}}|=1$ and $\overline{\mathrm{b}} \cdot \overline{\mathrm{c}}=1$. There is nonzero vector $\overline{\mathrm{d}}$ coplanar with $\overline{\mathrm{a}}+\overline{\mathrm{b}}$ and $2 \overline{\mathrm{~b}}-\overline{\mathrm{c}}$. If $\overline{\mathrm{d}} \cdot \overline{\mathrm{a}}=1$, then $|\overline{\mathrm{d}}|^2=$

A
$13 y^2+14 y+5$
B
$\quad y^2+14 y+5$
C
$y^2-14 y-5$
D
$y^2-14 y+5$
4
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The value of $m \in \mathbb{R}$, when angle between the vectors $\overline{\mathrm{p}}=\mathrm{m} y \hat{\mathrm{i}}-6 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}$ and $\overline{\mathrm{q}}=y \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+2 \mathrm{~m} y \hat{\mathrm{k}}$ is obtuse angle, is

A
$\mathrm{m}<-\frac{4}{2}$
B
$\mathrm{m}=0$
C
$m>0$
D
$-\frac{4}{3}<\mathrm{m}<0$
MHT CET Subjects
EXAM MAP