If the vectors $m \hat{i}+m \hat{j}+n \hat{k}, \hat{i}+\hat{k}, n \hat{i}+n \hat{j}+p \hat{k}$ lie in a plane then…
The area of a parallelogram whose diagonals are the vectors $2 \bar{a}-\bar{b}$ and $4 \bar{a}-5 \bar{b}$, where $\bar{a}$ and $\bar{b}$ are unit vectors forming an angle of $45^{\circ}$ is
$\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ are nonzero vectors such that $\overline{\mathrm{a}}$ is perpendicular to $\overline{\mathrm{b}}$ and $\overline{\mathrm{c}},|\overline{\mathrm{a}}|=1,|\overline{\mathrm{~b}}|=2,|\overline{\mathrm{c}}|=1$ and $\overline{\mathrm{b}} \cdot \overline{\mathrm{c}}=1$. There is nonzero vector $\overline{\mathrm{d}}$ coplanar with $\overline{\mathrm{a}}+\overline{\mathrm{b}}$ and $2 \overline{\mathrm{~b}}-\overline{\mathrm{c}}$. If $\overline{\mathrm{d}} \cdot \overline{\mathrm{a}}=1$, then $|\overline{\mathrm{d}}|^2=$
The value of $m \in \mathbb{R}$, when angle between the vectors $\overline{\mathrm{p}}=\mathrm{m} y \hat{\mathrm{i}}-6 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}$ and $\overline{\mathrm{q}}=y \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+2 \mathrm{~m} y \hat{\mathrm{k}}$ is obtuse angle, is