1
MHT CET 2025 23rd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The function $\mathrm{f}(x)=2 x-\left|x-x^2\right|$ is

A
continuous at $x=1$
B
discontinuous at $x=1$
C
not defined at $x=1$
D
discontinuous at $x=0$
2
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$ \mathop {\lim }\limits_{x \to 2} \frac{x+3 x^2+5 x^3+7 x^4-166}{x-2}= $$

A
267
B
167
C
287
D
297
3
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(x)=\frac{10^x+7^x-14^x-5^x}{1-\cos x}, x \neq 0$ is continuous at $x=0$, then the value of $\mathrm{f}(0)$ is

A
$\log 2\left[\log \left(\frac{5}{7}\right)\right]$
B
$\log 4\left[\log \left(\frac{5}{7}\right)\right]$
C
$\quad \log 2\left[\log \left(\frac{7}{5}\right)\right]$
D
$\quad \log 4\left[\log \left(\frac{7}{5}\right)\right]$
4
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$ \mathop {\lim }\limits_{x \to 1}\left(\log _3 3 x\right)^{\log _x 8}=\ldots $$

A
$\mathrm{e}^{\log _3 8}$
B
$\quad \log _8 3$
C
$e^{\log _8 3}$
D
$\log _3 8$
MHT CET Subjects
EXAM MAP