1
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\lim _\limits{x \rightarrow 1} \frac{x^2-a x+b}{x-1}=7$, then $a+b$ is equal to

A
$-$1
B
1
C
$-$11
D
11
2
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $f(x)=\left(\sin ^4 x+\cos ^4 x\right), 0< x<\frac{\pi}{2}$, then the function has minimum value at $x=$

A
$0.7934, \frac{\pi}{9}$
B
$\frac{1}{2}, \frac{\pi}{4}$
C
$\frac{5}{8}, \frac{\pi}{3}$
D
$0.75, \frac{\pi}{8}$
3
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

$\lim _\limits{x \rightarrow 0} \frac{(1-\cos 2 x)(3+\cos x)}{x \tan 4 x}$ has the value

A
2
B
$\frac{1}{2}$
C
4
D
3
4
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $a, b \in(a \neq 0)$. If the function $f$ is defined as

$$f(x)=\left\{\begin{array}{cc} \frac{2 x^2}{\mathrm{a}} & , 0 \leq x<1 \\ \mathrm{a} & , 1 \leq x<\sqrt{2} \\ \frac{2 \mathrm{~b}^2-4 b}{x} & , \sqrt{2} \leq x<\infty \end{array}\right.$$

is continuous in the interval $[0, \infty)$, then an ordered pair $(a, b)$ is

A
$(-\sqrt{2}, 1-\sqrt{3})$
B
$(\sqrt{2},-1+\sqrt{3})$
C
$(\sqrt{2}, 1-\sqrt{3})$
D
$(-\sqrt{2}, 1+\sqrt{3})$
MHT CET Subjects
EXAM MAP