If $\bar{a}=\frac{1}{\sqrt{10}}(3 \hat{i}+\hat{k})$ and $\bar{b}=\frac{1}{7}(2 \hat{i}+3 \hat{j}-6 \hat{k})$, then the value of $(2 \overline{\mathrm{a}}-\overline{\mathrm{b}}) \cdot((\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times(\overline{\mathrm{a}}+2 \overline{\mathrm{~b}}))=$
Let $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}, \overline{\mathrm{d}}$ are vectors such that $\overline{\mathrm{a}} \times \overline{\mathrm{b}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-\hat{\mathrm{k}}$ and $\overline{\mathrm{c}} \times \overline{\mathrm{d}}=3 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\lambda \hat{\mathrm{k}}$ and if $\left|\begin{array}{ll}\overline{\mathrm{a}} \cdot \overline{\mathrm{c}} & \overline{\mathrm{b}} \cdot \overline{\mathrm{c}} \\ \overline{\mathrm{a}} \cdot \overline{\mathrm{d}} & \overline{\mathrm{b}} \cdot \overline{\mathrm{d}}\end{array}\right|=0$, then $\lambda=$
Let $\bar{a}=\hat{i}+\hat{j}+\hat{k}, \bar{b}$ and $\bar{c}=\hat{j}-\hat{k}$ be three vectors such that $\overline{\mathrm{a}} \times \overline{\mathrm{b}}=\overline{\mathrm{c}}$ and $\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}=1$. If the length of projection vector of the vector $\overline{\mathrm{b}}$ on the vector $\overline{\mathrm{a}} \times \overline{\mathrm{c}}$ is $l$, then the value of $3 l^2$ is
The area of the rectangle having vertices $\mathrm{P}, \quad \mathrm{Q}, \quad \mathrm{R}, \quad \mathrm{S}$ with position vectors $-\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}, \hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}, \hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}},-\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}}$ respectively is