1
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\bar{a}, \bar{b}, \bar{c}$ are non coplanar unit vectors such that $\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})=\frac{\overline{\mathrm{b}}+\overline{\mathrm{c}}}{\sqrt{2}}$ then the angle between $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$ is

A
$\frac{\pi}{2}$
B
$\frac{\pi}{4}$
C
$\frac{\pi}{3}$
D
$\frac{3 \pi}{4}$
2
MHT CET 2025 23rd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $\bar{a}=\hat{i}+\hat{j}, \bar{b}=2 \hat{i}-\hat{k}, \bar{c}=3 \hat{i}-\hat{j}+\hat{k}$, then vector $\overline{\mathrm{p}}$ satisfying $\overline{\mathrm{p}} \cdot \overline{\mathrm{a}}=0$ and $\overline{\mathrm{p}} \times \overline{\mathrm{b}}=\overline{\mathrm{c}} \times \overline{\mathrm{b}}$ is

A
$\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}}$
B
$\hat{i}-2 \hat{j}+\hat{k}$
C
$-\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}$
D
$\hat{i}-\hat{j}+2 \hat{k}$
3
MHT CET 2025 23rd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\bar{a}=2 \hat{i}+3 \hat{j}+4 \hat{k}, \bar{b}=\hat{i}-2 \hat{j}-2 \hat{k}, \bar{c}=-\hat{i}+4 \hat{j}+3 \hat{k}$ and if $\overline{\mathrm{d}}$ is vector perpendicular to both $\overline{\mathrm{b}}$ and $\overline{\mathrm{c}}, \overline{\mathrm{a}} \cdot \overline{\mathrm{d}}=18$, then $|\overline{\mathrm{a}} \times \overline{\mathrm{d}}|^2=$

A
640
B
680
C
720
D
740
4
MHT CET 2025 23rd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $\bar{a}, \bar{b}, \bar{c}$ be three vectors such that $\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}}=\overline{0},|\overline{\mathrm{a}}|=3,|\overline{\mathrm{~b}}|=4,|\overline{\mathrm{c}}|=5$, then $\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}+\overline{\mathrm{b}} \cdot \overline{\mathrm{c}}+\overline{\mathrm{c}} \cdot \overline{\mathrm{a}}=$

A
25
B
-25
C
50
D
-50
MHT CET Subjects
EXAM MAP