1
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $(2+\sin x) \frac{\mathrm{d} y}{\mathrm{~d} x}+(y+1) \cos x=0$ and $y(0)=1$ then $y\left(\frac{\pi}{2}\right)$ is equal to

A
$-\frac{2}{3}$
B
$-\frac{1}{3}$
C
$\frac{4}{3}$
D
  $\frac{1}{3}$
2
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The solution of the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}=(x-y)^2$ when $y(1)=1$ is

A
$\log \left|\frac{2-y}{2-x}\right|=2(y-1)$
B
$-\log \left|\frac{1+x-y}{1-x+y}\right|=x+y-2$
C
$\log \left|\frac{2-x}{2-y}\right|=x-y$
D
$-\log \left|\frac{1-+xy}{1+x-y}\right|=2(x-1)$
3
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $x \frac{\mathrm{~d} y}{\mathrm{~d} x}=y(\log y-\log x+1)$, then general solution of this equation is

A
$\log \left(\frac{x}{y}\right)=\mathrm{cy}$, where c is a constant of integration.
B
$\log \left(\frac{x}{y}\right)=\mathrm{c} x$, where c is a constant of integration.
C
$\log \left(\frac{y}{x}\right)=\mathrm{cy}$, where c is a constant of integration.
D
$\log \left(\frac{y}{x}\right)=c x$, where $c$ is a constant of integration.
4
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

A spherical metal ball at 80$^\circ$C cools in 5 minutes to 60$^\circ$C, in surrounding temperature of 20$^\circ$C, then the temperature of the ball after 20 minutes is approximately

A
(8.15)$^\circ$C
B
(11.85)$^\circ$C
C
(28.15)$^\circ$C
D
(31.85)$^\circ$C
MHT CET Subjects
EXAM MAP