1
JEE Advanced 2024 Paper 2 Online
MCQ (More than One Correct Answer)
+4
-2
Change Language

A table tennis ball has radius $(3 / 2) \times 10^{-2} \mathrm{~m}$ and mass $(22 / 7) \times 10^{-3} \mathrm{~kg}$. It is slowly pushed down into a swimming pool to a depth of $d=0.7 \mathrm{~m}$ below the water surface and then released from rest. It emerges from the water surface at speed $v$, without getting wet, and rises up to a height $H$. Which of the following option(s) is(are) correct?

[Given: $\pi=22 / 7, g=10 \mathrm{~m} \mathrm{~s}^{-2}$, density of water $=1 \times 10^3 \mathrm{~kg} \mathrm{~m}^{-3}$, viscosity of water $=1 \times 10^{-3} \mathrm{~Pa}$-s.]

A
The work done in pushing the ball to the depth $d$ is $0.077 \mathrm{~J}$.
B
If we neglect the viscous force in water, then the speed $v=7 \mathrm{~m} / \mathrm{s}$.
C
If we neglect the viscous force in water, then the height $H=1.4 \mathrm{~m}$.
D
The ratio of the magnitudes of the net force excluding the viscous force to the maximum viscous force in water is $500 / 9$.
2
JEE Advanced 2022 Paper 2 Online
MCQ (More than One Correct Answer)
+4
-2
Change Language
A bubble has surface tension $S$. The ideal gas inside the bubble has ratio of specific heats $\gamma=$ $\frac{5}{3}$. The bubble is exposed to the atmosphere and it always retains its spherical shape. When the atmospheric pressure is $P_{a 1}$, the radius of the bubble is found to be $r_{1}$ and the temperature of the enclosed gas is $T_{1}$. When the atmospheric pressure is $P_{a 2}$, the radius of the bubble and the temperature of the enclosed gas are $r_{2}$ and $T_{2}$, respectively.

Which of the following statement(s) is(are) correct?
A
If the surface of the bubble is a perfect heat insulator, then $\left(\frac{r_{1}}{r_{2}}\right)^{5}=\frac{P_{a 2}+\frac{2 S}{r_{2}}}{P_{a 1}+\frac{2 S}{r_{1}}}$.
B
If the surface of the bubble is a perfect heat insulator, then the total internal energy of the bubble including its surface energy does not change with the external atmospheric pressure.
C
If the surface of the bubble is a perfect heat conductor and the change in atmospheric temperature is negligible, then $\left(\frac{r_{1}}{r_{2}}\right)^{3}=\frac{P_{a 2}+\frac{4 S}{r_{2}}}{P_{a 1}+\frac{4 S}{r_{1}}}$.
D
If the surface of the bubble is a perfect heat insulator, then $\left(\frac{T_{2}}{T_{1}}\right)^{\frac{5}{2}}=\frac{P_{a 2}+\frac{4 S}{r_{2}}}{P_{a 1}+\frac{4 S}{r_{1}}}$.
3
JEE Advanced 2022 Paper 1 Online
MCQ (More than One Correct Answer)
+4
-2
Change Language

An ideal gas of density $\rho=0.2 \mathrm{~kg} \mathrm{~m}^{-3}$ enters a chimney of height $h$ at the rate of $\alpha=$ $0.8 \mathrm{~kg} \mathrm{~s}^{-1}$ from its lower end, and escapes through the upper end as shown in the figure. The cross-sectional area of the lower end is $A_{1}=0.1 \mathrm{~m}^{2}$ and the upper end is $A_{2}=0.4 \mathrm{~m}^{2}$. The pressure and the temperature of the gas at the lower end are $600 \mathrm{~Pa}$ and $300 \mathrm{~K}$, respectively, while its temperature at the upper end is $150 \mathrm{~K}$. The chimney is heat insulated so that the gas undergoes adiabatic expansion. Take $g=10 \mathrm{~m} \mathrm{~s}^{-2}$ and the ratio of specific heats of the gas $\gamma=2$. Ignore atmospheric pressure.

JEE Advanced 2022 Paper 1 Online Physics - Properties of Matter Question 14 English

Which of the following statement(s) is(are) correct?

A
The pressure of the gas at the upper end of the chimney is $300 \mathrm{~Pa}$.
B
The velocity of the gas at the lower end of the chimney is $40 \mathrm{~m} \mathrm{~s}^{-1}$ and at the upper end is $20 \mathrm{~ms}^{-1}$.
C
The height of the chimney is $590 \mathrm{~m}$.
D
The density of the gas at the upper end is $0.05 \mathrm{~kg} \mathrm{~m}^{-3}$.
4
JEE Advanced 2021 Paper 1 Online
MCQ (More than One Correct Answer)
+4
-2
Change Language
A cylindrical tube, with its base as shown in the figure, is filled with water. It is moving down with a constant acceleration a along a fixed inclined plane with angle $$\theta$$ = 45$$^\circ$$. P1 and P2 are pressures at points 1 and 2, respectively, located at the base of the tube. Let $$\beta$$ = (P1 $$-$$ P2)/($$\rho$$gd), where $$\rho$$ is density of water, d is the inner diameter of the tube and g is the acceleration due to gravity. Which of the following statement(s) is(are) correct?

JEE Advanced 2021 Paper 1 Online Physics - Properties of Matter Question 22 English
A
$$\beta$$ = 0 when a = g/$$\sqrt 2 $$
B
$$\beta$$ > 0 when a = g/$$\sqrt 2 $$
C
$$\beta = {{\sqrt 2 - 1} \over {\sqrt 2 }}$$ when a = g/2
D
$$\beta = {1 \over {\sqrt 2 }}$$ when a = g/2
JEE Advanced Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12