1
MHT CET 2025 19th April Morning Shift
MCQ (Single Correct Answer)
+2
-0
In a bank, the principal increases continuously at a rate of $x \%$ per year. Then the rate $x$, if ₹$100$ double itself in 10 years, is ( $\log 2=0.6931$)
A
$6.93 \%$
B
$9.63 \%$
C
$6.09 \%$
D
$3.69 \%$
2
MHT CET 2025 19th April Morning Shift
MCQ (Single Correct Answer)
+2
-0
The solution of the differential equation $x \frac{\mathrm{~d}^2 y}{\mathrm{~d} x^2}=1$ at $x=y=1$ with $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ at $x=1$, is
A
$y=x \log x+x+2$
B
$y=x \log x-x+2$
C
$x=x \log x+2$
D
$x \log x-x=y$
3
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The slope of tangent at $(x, y)$ to a curve passing through $\left(1, \frac{\pi}{4}\right)$ is $\frac{y}{x}-\cos ^2 \frac{y}{x}$, then the equation of curve is

A
$y=\tan ^{-1}\left(\log \left(\frac{\mathrm{e}}{x}\right)\right)$
B
$y=x^2\left(\tan ^{-1}\left(\log \frac{\mathrm{e}}{x}\right)\right)$
C
$y=x\left(\tan ^{-1}\left(\log \frac{\mathrm{e}}{x}\right)\right)$
D
$y=\frac{1}{x}\left(\tan ^{-1}\left(\log \frac{\mathrm{e}}{x}\right)\right)$
4
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The function $y(x)$ represented by $x=\sin t$, $y=a e^{t \sqrt{2}}+b e^{t \sqrt{2}}, t \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ satisfies the equation $\left(1-x^2\right) y^{\prime \prime}-x y^{\prime}=\mathrm{k} y$, then the value of k is k is

A
1
B
2
C
$-$1
D
0
MHT CET Subjects
EXAM MAP