1
MHT CET 2025 19th April Morning Shift
MCQ (Single Correct Answer)
+2
-0
If $y=y(x)$ satisfies $\left(\frac{2+\sin x}{1+y}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=-\cos x$ such that $y(0)=2$, then $y\left(\frac{\pi}{2}\right)$ is equal to
A
4
B
3
C
2
D
1
2
MHT CET 2025 19th April Morning Shift
MCQ (Single Correct Answer)
+2
-0
In a bank, the principal increases continuously at a rate of $x \%$ per year. Then the rate $x$, if ₹$100$ double itself in 10 years, is ( $\log 2=0.6931$)
A
$6.93 \%$
B
$9.63 \%$
C
$6.09 \%$
D
$3.69 \%$
3
MHT CET 2025 19th April Morning Shift
MCQ (Single Correct Answer)
+2
-0
The solution of the differential equation $x \frac{\mathrm{~d}^2 y}{\mathrm{~d} x^2}=1$ at $x=y=1$ with $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ at $x=1$, is
A
$y=x \log x+x+2$
B
$y=x \log x-x+2$
C
$x=x \log x+2$
D
$x \log x-x=y$
4
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The slope of tangent at $(x, y)$ to a curve passing through $\left(1, \frac{\pi}{4}\right)$ is $\frac{y}{x}-\cos ^2 \frac{y}{x}$, then the equation of curve is

A
$y=\tan ^{-1}\left(\log \left(\frac{\mathrm{e}}{x}\right)\right)$
B
$y=x^2\left(\tan ^{-1}\left(\log \frac{\mathrm{e}}{x}\right)\right)$
C
$y=x\left(\tan ^{-1}\left(\log \frac{\mathrm{e}}{x}\right)\right)$
D
$y=\frac{1}{x}\left(\tan ^{-1}\left(\log \frac{\mathrm{e}}{x}\right)\right)$
MHT CET Subjects
EXAM MAP