1
GATE ECE 1991
MCQ (Single Correct Answer)
+2
-0.6
The voltage across an impedance in a network is V(s) = Z(s) I(s), where V(s), Z(s) and $${\rm I}$$(s) are the Laplace Transforms of the corresponding time functions V(t), z(t) and i(t).
The voltage v(t) is
2
GATE ECE 1990
MCQ (Single Correct Answer)
+2
-0.6
The impulse response and the excitation function of a linear time invariant casual system are shown in Fig. a and b respectively. The output of the system at t = 2 sec. is equal to
3
GATE ECE 1990
MCQ (Single Correct Answer)
+2
-0.6
The response of an initially relaxed linear constant parameter network to a unit impulse applied at $$t = 0$$ is $$4{e^{ - 2t}}u\left( t \right).$$ The response of this network to a unit step function will be:
4
GATE ECE 1988
MCQ (Single Correct Answer)
+2
-0.6
The transfer function of a zero-order hold is
Questions Asked from Continuous Time Linear Invariant System (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE ECE 2017 Set 2 (3)
GATE ECE 2017 Set 1 (1)
GATE ECE 2015 Set 2 (2)
GATE ECE 2013 (1)
GATE ECE 2012 (1)
GATE ECE 2011 (1)
GATE ECE 2010 (1)
GATE ECE 2009 (1)
GATE ECE 2008 (2)
GATE ECE 2007 (1)
GATE ECE 2006 (1)
GATE ECE 2005 (1)
GATE ECE 2004 (3)
GATE ECE 2001 (1)
GATE ECE 2000 (2)
GATE ECE 1997 (1)
GATE ECE 1994 (1)
GATE ECE 1991 (2)
GATE ECE 1990 (2)
GATE ECE 1988 (1)
GATE ECE Subjects
Signals and Systems
Representation of Continuous Time Signal Fourier Series Discrete Time Signal Fourier Series Fourier Transform Discrete Time Signal Z Transform Continuous Time Linear Invariant System Transmission of Signal Through Continuous Time LTI Systems Discrete Time Linear Time Invariant Systems Sampling Continuous Time Signal Laplace Transform Discrete Fourier Transform and Fast Fourier Transform Transmission of Signal Through Discrete Time Lti Systems Miscellaneous Fourier Transform
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics