1
GATE ECE 2008
MCQ (Single Correct Answer)
+2
-0.6
A linear, time-invariant, causal continuous time system has a rational transfer function with simple poles at s = - 2 and s = - 4, and one simple zero at s = - 1. A unit step u(t) is applied at the input of the system. At steady state, the output has constant value of 1. The impulse response of this system is
2
GATE ECE 2007
MCQ (Single Correct Answer)
+2
-0.6
The frequency response of a linear, time-invariant system is given by H(f) = $${5 \over {1 + j10\pi f}}$$. The step response of the system is
3
GATE ECE 2006
MCQ (Single Correct Answer)
+2
-0.6
Let g(t) = p(t) * p(t), where * denotes convolution and p(t) = u(t) - (t-1) with u(t) being the unit step function. The impulse response of filter matched to the singal s(t) = g(t) - $$[\delta (t - 2)*g(t)]$$ is given as
4
GATE ECE 2005
MCQ (Single Correct Answer)
+2
-0.6
The output y(t) of a linear time invariant system is related to its input x(t) by the following equation: y(t) = 0.5 x $$(t - {t_d} + T) + \,x\,(t - {t_d}) + 0.5\,x(t - {t_d} - T)$$. The filter transfer function $$H(\omega )$$ of such a system is given by
Questions Asked from Continuous Time Linear Invariant System (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE ECE 2017 Set 1 (1)
GATE ECE 2017 Set 2 (3)
GATE ECE 2015 Set 2 (2)
GATE ECE 2013 (1)
GATE ECE 2012 (1)
GATE ECE 2011 (1)
GATE ECE 2010 (1)
GATE ECE 2009 (1)
GATE ECE 2008 (2)
GATE ECE 2007 (1)
GATE ECE 2006 (1)
GATE ECE 2005 (1)
GATE ECE 2004 (3)
GATE ECE 2001 (1)
GATE ECE 2000 (2)
GATE ECE 1997 (1)
GATE ECE 1994 (1)
GATE ECE 1991 (2)
GATE ECE 1990 (2)
GATE ECE 1988 (1)
GATE ECE Subjects
Signals and Systems
Representation of Continuous Time Signal Fourier Series Fourier Transform Continuous Time Signal Laplace Transform Discrete Time Signal Fourier Series Fourier Transform Discrete Fourier Transform and Fast Fourier Transform Discrete Time Signal Z Transform Continuous Time Linear Invariant System Discrete Time Linear Time Invariant Systems Transmission of Signal Through Continuous Time LTI Systems Sampling Transmission of Signal Through Discrete Time Lti Systems Miscellaneous
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics