1
GATE ECE 2013
MCQ (Single Correct Answer)
+2
-0.6
The impulse response of a continuous time system is given by $$h(t) = \delta (t - 1) + \delta (t - 3)$$. The value of the step response at t = 2 is
A
0
B
1
C
2
D
3
2
GATE ECE 2012
MCQ (Single Correct Answer)
+2
-0.6
The input x(t) and output y(t) of a system are related as y(t) = $$\int\limits_{ - \infty }^t x (\tau )\cos (3\tau )d\tau $$.

The system is

A
time-invariant and stable.
B
stable and not time-invariant.
C
time-invariant and not stable.
D
not time-invariant and not stable.
3
GATE ECE 2011
MCQ (Single Correct Answer)
+2
-0.6
An input x(t) = exp( -2t) u(t) + $$\delta $$(t-6) is applied to an LTI system with impulse response h(t) = u(t). The output is
A
[ 1- exp( -2t)] u(t) + u(t+6)
B
[ 1- exp( -2t)] u(t) + u(t-6)
C
0.5 [1 - exp( -2t)] u(t) + u(t+6)
D
0.5 [1- exp( -2t)] u(t) + u(t-6)
4
GATE ECE 2010
MCQ (Single Correct Answer)
+2
-0.6
A continuous time LTI system is described by $${{{d^2}y(t)} \over {d{t^2}}} + 4{{dy(t)} \over {dt}} + 3y(t)\, = 2{{dx(t)} \over {dt}} + 4x(t)$$.

Assuming zero initial conditions, the response y(t) of the above system for the input x(t) = $${e^{ - 2t}}$$ u(t) is given by

A
$$({e^t} - {e^{3t}})\,u(t)$$
B
$$({e^{ - t}} - {e^{ - 3t}})\,u(t)$$
C
$$({e^{ - t}} + {e^{ - 3t}})\,u(t)$$
D
$$({e^t} + {e^{3t}})\,u(t)$$
GATE ECE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12