1
GATE ECE 2017 Set 2
Numerical
+2
-0
The transfer function of a causal LTI system is H(s) = 1/s. If the input to the system is x(t) = $$\left[ {\sin (t)/\pi t} \right]u(t);$$ where u(t) is a unit step function. The system output y(t) as $$t \to \infty $$ is _____________________.
Your input ____
2
GATE ECE 2017 Set 2
Numerical
+2
-0
Consider the parallel combination of two LTI systems shown in the figure. GATE ECE 2017 Set 2 Signals and Systems - Continuous Time Linear Invariant System Question 6 English

The impulse responses of the systems are


$${h_1}(t) = 2\delta (t + 2)\, - 3\delta (t + 1)$$
$${h_2}(t) = \delta (t - 2)$$
If the input x(t) is a unit step signal, then the energy of y(t) is__________________.
Your input ____
3
GATE ECE 2017 Set 2
Numerical
+2
-0
Consider an LTI system with magnitude response $$$\left| {H(f)} \right| = \left\{ {\matrix{ {1 - \,{{\left| f \right|} \over {20}},} & {\left| f \right| \le 20} \cr {0,} & {\left| f \right| > 20} \cr } } \right.$$$ and phase response Arg[H(f)]= - 2f.
If the input to the system is $$x(t) = 8\cos \left( {20\pi t + \,{\pi \over 4}} \right) + \,16\sin \left( {40\pi t + {\pi \over 8}} \right) + 24\,\cos \left( {80\pi t + {\pi \over {16}}} \right)$$
Then the average power of the output signal y(t) is_____________.
Your input ____
4
GATE ECE 2017 Set 1
Numerical
+2
-0
A continuous time signal x(t) = $$4\cos (200\pi t)$$ + $$8\cos(400\pi t)$$, where t is in seconds, is the input to a linear time invariant (LTI) filter with the impulse response $$h(t) = \left\{ {{{2\sin (300\pi t)} \over {\matrix{ {\pi t} \cr {600} \cr } }}} \right.\,,\,\matrix{ t \cr t \cr } \,\matrix{ \ne \cr = \cr } \,\matrix{ 0 \cr 0 \cr } $$

Let y(t) be the output of this filter. The maximum value of $$\left| {y(t)} \right|$$ is ________________________.

Your input ____
GATE ECE Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
CBSE
Class 12